

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27)

Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Juin 2016 Rapport 84858/A

SDOMODE

348 rue de la Semaille 27300 BERNAY

Direction Régionale Paris - Centre - Normandie Pôle EAU

Horizon 2000 - Mach 6
Avenue des Hauts-Grigneux
76420 Bihorel

Tel: +33 (0)2.32.76.69.60 Fax: +33 (0)2.32.76.69.63

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Sommaire

		Pages
1.	Introduction	3
2.	Principales caractéristiques	4
2.1.	Localisation	4
2.2.	Activité	8
3.	Contexte géologique et hydrogéologique	9
3.1.	Contexte géologique	9
3.2.	Contexte hydrogéologique	9
4.	Présentation du réseau de contrôle existant	13
5.	Actualisation de la piézométrie locale	14
6.	Proposition de sites d'implantation pour deux nouveaux aval	piézomètres 22
Liste o	des figures	
Figure	re 1 : Localisation du Centre de Traitement et de Valorisation éne fond IGN	
Figure	re 2 : Plan cadastral du Centre de Traitement et de Valorisation ér	
Figure	re 3 : Projet d'extension de l'ISDND	7
Figure	re 4 : Localisation du Centre de Traitement et de Valorisation éne	ergétique sur
	carte géologique	
Figur	re 5 : Localisation du Centre de Traitement et de Valorisation éne	
Eigun	carte hydrogéologiquere 6 : Localisation des ouvrages du réseau de contrôle actuel	
_	e 7 : Esquisse piézométrique – Octobre 2012.	
_	e 8 : Esquisse piezométrique – Octobre 2012e	
	re 9 : Esquisse piezométrique – Juin 2014.	
	re 10 : Esquisse piézométrique – Novembre 2014.	
_	re 11 : Esquisse piézométrique – Août 2015	
	re 12 : Esquisse piézométrique – Décembre2015	
	re 13 : Esquisse piézométrique – Mars 2016.	
	re 14 : Proposition d'implantation de deux nouveaux piézomètres	
8		
Liste o	des tableaux	
		_
	eau 1 : Données cadastrales	
	eau 2 : Principales caractéristiques des piézomètres actuels	
Table	eau 3 : Cotes piézométriques (m N.G.F)	14

ANTEA GROUP

SDOMODE

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

1. Introduction

Le Syndicat de Destruction des Ordures Ménagères de l'Ouest de l'Eure (SDOMODE) exploite depuis janvier 2006 le Centre de Traitement et de Valorisation Energétique de Malleville-sur-le-Bec (27).

Le CETRAVAL permet le traitement en enfouissement d'une partie des ordures ménagères de l'Ouest de l'Eure, des encombrants, du plâtre et des déchets industriels banals.

Pour se conformer à l'arrêté préfectoral d'autorisation d'exploiter du 09 août 2010 (article 9.2.3.1.), le SDOMODE a implanté trois piézomètres en aval écoulement en 2014.

Récemment, la société SDOMODE a obtenu auprès du conseil départemental de l'environnement et des risques sanitaires et technologiques de l'Eure, un avis favorable à modifier de façon substantielle les conditions d'aménagement et d'exploitation du Centre de Traitement et de Valorisation (CETRAVAL) à partir de l'Arrêté préfectoral n°D1-B1-15 de Novembre 2015.

Dans le cadre de ce projet d'agrandissement du site, le SDOMODE souhaite mettre à jour l'esquisse piézométrique réalisée par Antea en 2012 (rapport A67983) et donner un avis sur l'implantation de nouveaux piézomètres.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

2. Principales caractéristiques

2.1. Localisation

Le Centre de Traitement et de Valorisation énergétique (C.T.V.) se situe pour la plus grande partie sur la commune de Malleville sur le Bec (27). Deux parcelles appartiennent à la commune de Bec-Hellouin (27) et une autre se trouve sur la commune de Pont Authou au lieudit « la Couture de Maurepas ».

L'exploitation se trouve à plus de 2 km au Nord-Ouest du bourg de Malleville-sur-le-Bec et à 1,5 km au Nord-Est de Pont-Authou. Elle se repère sur la carte IGN au 1 / 25 000 de Bourgtheroulde-Infreville n°1912O.

La limite de propriété du site après l'extension a été instituée sur l'emprise des parcelles figurant dans le tableau ci-dessous :

Commune	Section	N° de parcelle
Malleville-sur-le-Bec	AB	2, 10, 12,13, 12, 26, 27, 28, 34
La Baa Hallavia	Α	3 et 4
Le Bec-Hellouin	ZA	1
Pont-Authou	ZA	8, 13, 14, 15

Tableau 1 : Données cadastrales

Le CTV se trouve sur le plateau à une altitude d'environ + 142m N.G.F. La vallée de la Risle qui borde ce plateau est distante de 1,9 km à l'Ouest du site. Le point le plus haut du site d'étude se trouve à + 152m N.G.F à l'Est du site et le point le plus bas à + 139m N.G.F. à l'ouest du site (Figure 1).

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Localisation du Centre de Traitement et de Valorisation énergétique de Malleville-sur-le Bec sur fond IGN Echelle 1/25 000

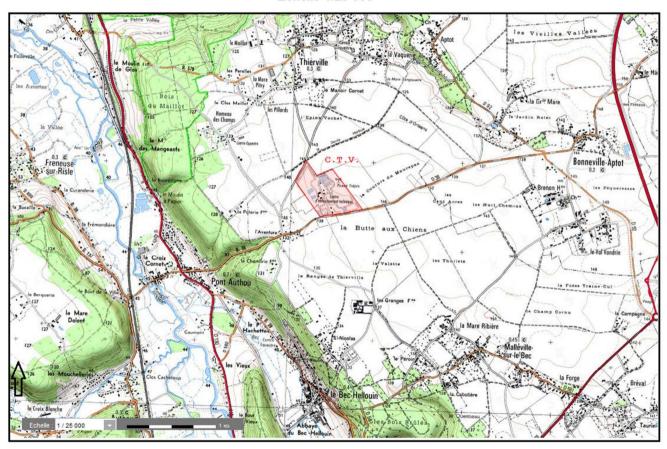


Figure 1 : Localisation du Centre de Traitement et de Valorisation énergétique sur fond IGN

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Plan cadastral du Centre de Traitement et de Valorisation énergétique Echelle 1/5 000

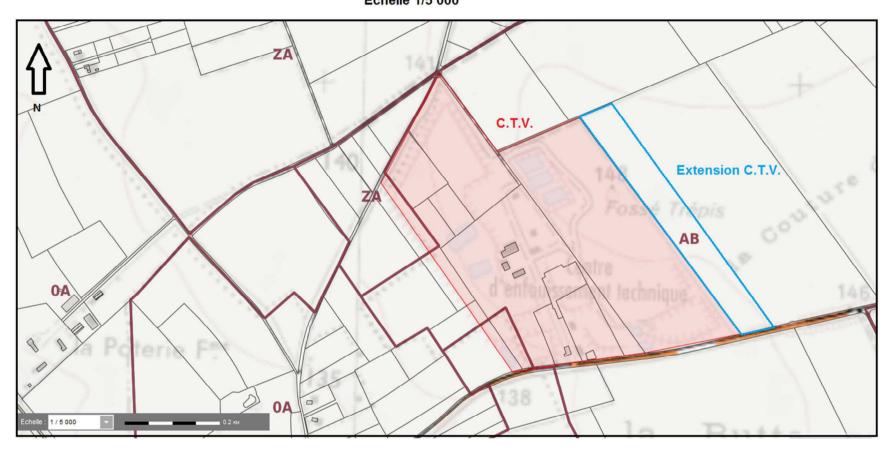


Figure 2 : Plan cadastral du Centre de Traitement et de Valorisation énergétique.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

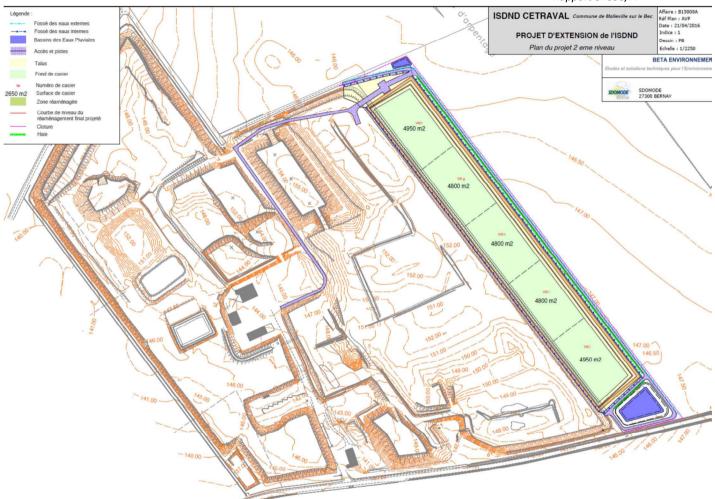


Figure 3 : Projet d'extension de l'ISDND.

ANTEA GROUP	

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

2.2. Activité

Le Centre de Traitement et de Valorisation Energétique de Malleville sur le Bec permet le traitement en enfouissement d'une partie des ordures ménagères de l'Ouest de l'Eure.

D'après l'arrêté préfectoral d'autorisation du 24 novembre 1995, les déchets admissibles dans ce C.T.V. correspondent aux trois catégories suivantes :

Déchets de la catégorie A :

- Déchets résultant des opérations de tri et/ou de compostage et/ou de méthanisation des ordures ménagère,
- Déchets industriels assimilables aux ordures ménagères résultant d'opérations de tri.

> Déchets de la catégorie B :

- Résidus de l'incinération des ordures ménagères (mâchefers, résidus d'épuration des fumées stabilisées),
- Sables de fonderie

Déchets de la catégorie C :

- o Déchets industriels banals, déchets commerciaux et artisanaux assimilables aux ordures ménagères,
- Ordures ménagères brutes,
- Déchets verts,
- o Encombrants,
- o Boues en provenance de l'assainissement urbain.

La zone exploitée est divisée en casiers, eux-mêmes subdivisés en alvéoles dans lesquelles sont stockés les déchets.

La faible perméabilité qu'offre le complexe limons-argiles à silex du milieu représente une imperméabilisation passive des alvéoles. Une imperméabilisation active constituée par une géomembrane couplée à deux géotextiles complète l'imperméabilisation du sol.

De plus, les lixiviats issus de la décomposition des déchets organiques sont récupérés par des puits installés dans chaque alvéole des casiers. Le sous-sol est donc protégé.

ΓFΔ	GRC	II IP

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

3. Contexte géologique et hydrogéologique

3.1. Contexte géologique

Le site s'étend en bordure du plateau crayeux d'âge Crétacé du Turonien et du Coniacien. La craie turonienne est marneuse alors que la craie coniacienne est plus massive et blanche. Les silex se présentent en niveaux tabulaires dans la partie supérieure du Turonien et dans le Coniacien. Au-dessus du substratum crayeux, on rencontre l'Argiles à silex puis les limons de plateau à l'affleurement.

Les sondages effectués sur le site permettent de déterminer la géologie localement. Sur le site du C.T.V., les limons ont une épaisseur de 3 à 10 m. Ils surmontent les Argiles à silex. D'une épaisseur de 7 à 31 m (Pz1), les Argiles à silex forment une couche imperméable. En dessous, la craie a été reconnue par les forages jusqu'à 90 m de profondeur, le toit se situant entre 10 et 13m de profondeur.

3.2. Contexte hydrogéologique

La formation crayeuse constitue un aquifère possédant à la fois une perméabilité d'interstices et une perméabilité de fissures. En plateau, la craie est beaucoup moins fissurée qu'en vallée.

D'après la carte hydrogéologique du département de l'Eure à 1 / 100 000 datant de 1980 (Figure 5), l'écoulement de la nappe de la craie s'effectue d'Est en Ouest au niveau du site d'étude. Au niveau du C.T.V., la côte nappe de la craie est indiquée entre +75 et +85m N.G.F en 1980.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Légende

Localisation du Centre de Traitement et de Valorisation énergétique sur carte géologique Echelle 1/50 000

FORMATIONS SUPERFICIELLES ET ALLUVIONNAIRES Complexe des limons Sables tertiaires en poches des plateaux dans l'argile à silex CLP Rs Colluvions de versants Formation argileuse à silex TERRAINS SÉDIMENTAIRES CRS Colluvions de versants (silex et argiles) Sénonien Craie blanche à silex zonés Remplissage colluvionnaire des vallons (silex, argiles et limons) Turonien Fz Craie marneuse pauvre en silex Alluvions actuelles et récentes Fyd-c Cénomanier Craie glauconieuse à silex gris et noirs Alluvions anciennes Basse et moyenne terrasses Marnes silteuses et sables ferrugineux Alluvions anciennes

Figure 4 : Localisation du Centre de Traitement et de Valorisation énergétique sur carte géologique.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

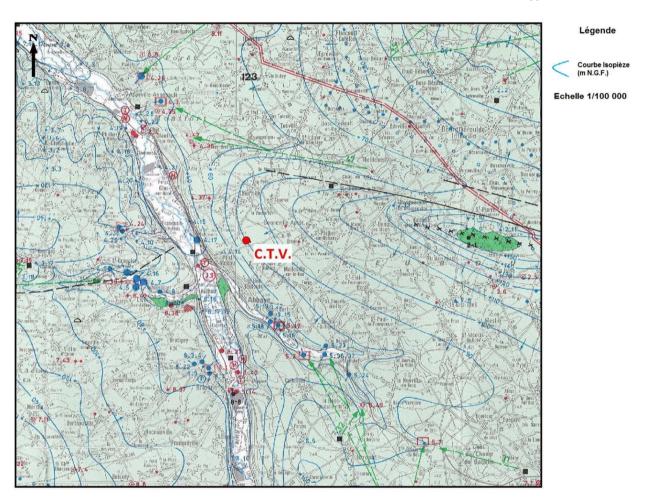


Figure 5 : Localisation du Centre de Traitement et de Valorisation énergétique sur carte hydrogéologique.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Localisation des ouvrages du réseau de contrôle actuel

Figure 6 : Localisation des ouvrages du réseau de contrôle actuel.

Λ NI ⁻	ΓFΑ	CD	\cap	ΙD
 AIN	I F A	CTR	w	JP.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

4. Présentation du réseau de contrôle existant

Le Centre de Traitement et de Valorisation énergétique possède actuellement un réseau de contrôle de la nappe de la craie, composé de 7 piézomètres.

Les principales caractéristiques de ces piézomètres sont relevées dans le tableau cidessous :

					Position suivant
		Х	Υ		le sens
Identification	N° BSS	Lambert	Lambert	Profondeur (m)	d'écoulement de
		2E	2E		la nappe de la
					craie
Pz1	01231X0026	482216	2473742	90	Aval
Pz2	01231X0027	482065	2473967	90	Aval
Pz3	01231X0034	482259	2474087	90	Amont
Pz4	01231X0030	482518	2473667	90	Aval
Pz5	01231X0031	482423	2474129	N.R.	Amont
Pz6	01231X0033	482136	2473867	90	Aval
Pz7	01234X0035	482328	2473635	90	Aval

Tableau 2 : Principales caractéristiques des piézomètres actuels

Le Pz3 a dû être remplacé par un nouveau piézomètre implanté à proximité de celui-ci suite à une demande de la DREAL.

La base de données du Sous-Sol (BSS) indique que 9 sondages ont été réalisés dans l'emprise du site.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

5. Actualisation de la piézométrie locale

Afin de confirmer le sens d'écoulement de la nappe de la craie d'Est en Ouest sur le site du C.T.V., des esquisses piézométriques ont été réalisées à différentes périodes de l'année.

Les mesures de niveau d'eau ont été réalisées par le SDOMODE. Le Tableau 3 présente les valeurs mesurées depuis Octobre 2002 jusqu'à Mars 2016.

Date PZ₁ PZ 2 PZ3 PZ 4 PZ 5 PZ6 PZ7 oct.-12 59,86 62,72 68,84 66,83 71,27 mai-13 65,53 64,56 69,88 61,81 61,13 69,41 68,13 nov.-14 65,9 64,87 71,43 71,45 juin-14 63,57 69,7 64,12 67,83 69,43 62,48 65,53 août-15 64,28 63,93 63,39 69,89 68,11 62,27 65,91 déc.-15 70,84 64,43 64,04 65,54 68,5 62,72 mars-16 66,13

Tableau 3 : Cotes piézométriques (m N.G.F).

Dans le but de représenter le sens d'écoulement de la nappe à différentes périodes de l'année (hautes eaux et basses eaux), il a été choisi d'utiliser les mesures relevées en Mai 2013, Juin 2014 et Aout 2015 pour représenter une esquisse piézométrique en période de « basses eaux » et les mesures d'Octobre 2012, Novembre 2015, Décembre 2015 et Mars 2016 pour représenter une esquisse piézométrique en période de « hautes eaux ».

Selon les esquisses piézométriques (Figures 7 à 12) le sens d'écoulement de la nappe de la craie est, globalement, d'Est en Ouest. L'écoulement converge vers le Pz1 ou Pz2 ; les deux sont situés en aval, dans l'extrémité Ouest site.

- → Globalement, l'écoulement de la nappe de la craie s'effectue d'Est en Ouest en période de « basses eaux »
- → Globalement, l'écoulement de la nappe de la craie s'effectue d'Est en Ouest en période de « hautes eaux »

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Esquisse piézométrique - Octobre 2012

Figure 7 : Esquisse piézométrique – Octobre 2012.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Esquisse piézométrique - Mai 2013

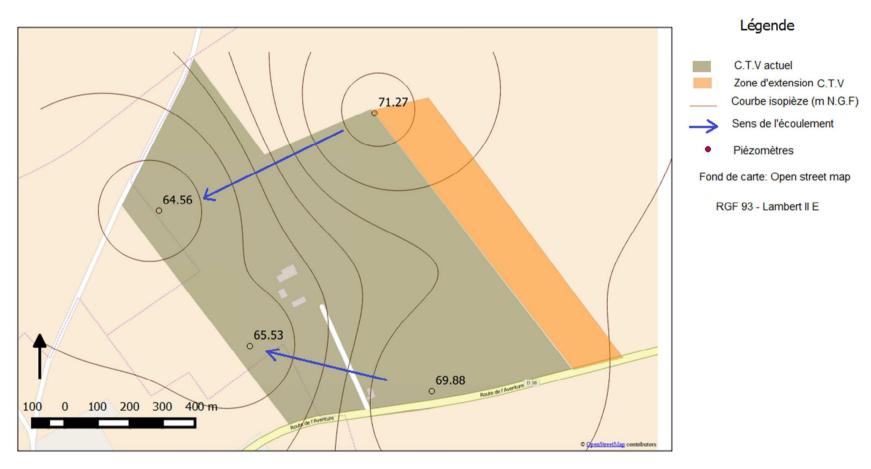
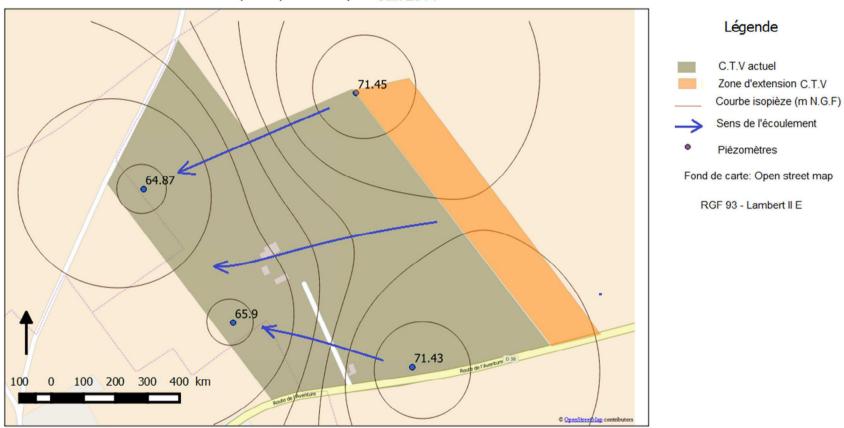


Figure 8 : Esquisse piézométrique – Mai 2013.


Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Légende

C.T.V actuel

Esquisse piézométrique - Juin 2014

Figure 9 : Esquisse piézométrique – Juin 2014.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Esquisse piézométrique - Novembre 2014

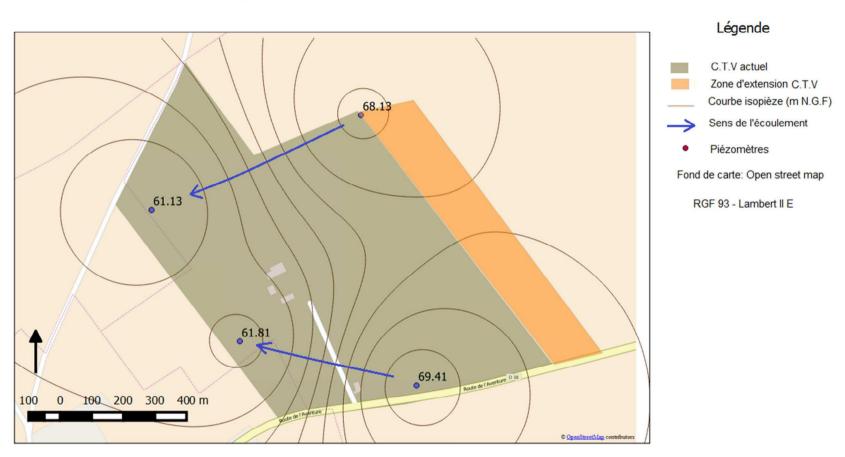


Figure 10 : Esquisse piézométrique – Novembre 2014.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Légende

C.T.V actuel

Piézomètres

Fond de carte: Open street map

RGF 93 - Lambert II E

Zone d'extension C.T.V

Sens de l'écoulement

Courbe isopièze (m N.G.F)

Esquisse piézométrique - Août 2015

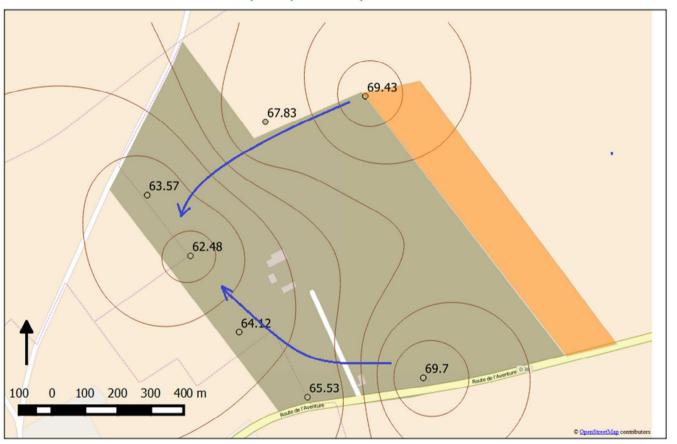


Figure 11 : Esquisse piézométrique – Août 2015.

19

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Esquisse piézométrique - Décembre 2015

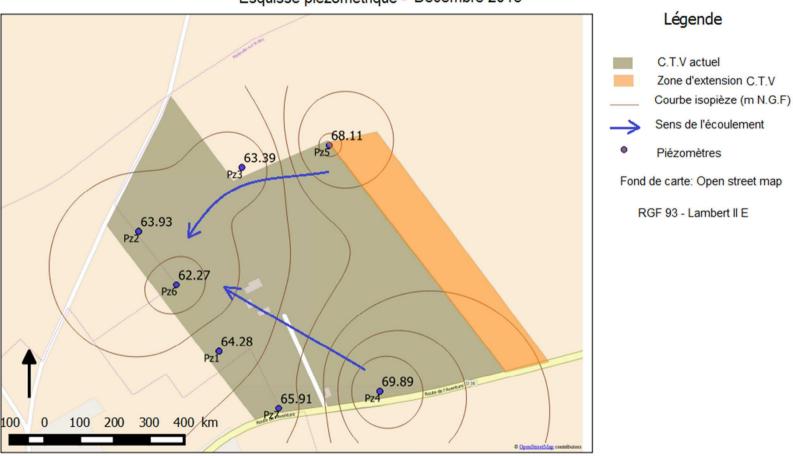


Figure 12 : Esquisse piézométrique – Décembre 2015.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Esquisse piézométrique - Mars 2016

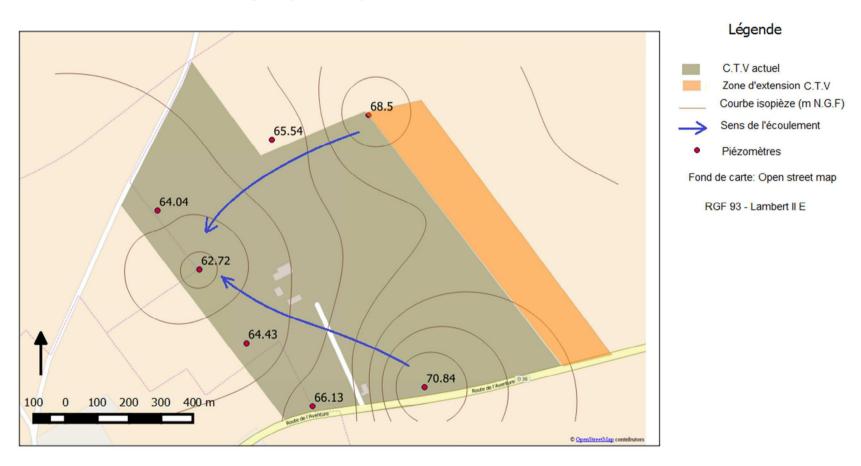


Figure 13 : Esquisse piézométrique – Mars 2016.

ANTEA GROUP	
ANTEAGROUP	

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

6. Proposition de sites d'implantation pour deux nouveaux piézomètres aval

Le réseau de contrôle actuel de la nappe de la craie, doit être renforcé pour se conformer à l'arrêté préfectoral n°D1-B1-15 du 4 Novembre 2015; qui autorise l'exploitation du site, suite à son extension. Le SDOMODE doit implanter deux nouveaux piézomètres (Pz8 et Pz9) en aval d'écoulement de cette nappe.

D'après les esquisses piézométriques obtenues, présentées précédemment, le sens d'écoulement de la nappe de la craie d'Est en Ouest indiqué sur la carte hydrogéologique de la région a été confirmé.

Suite à la confirmation du sens d'écoulement de la nappe, nous proposons deux zones d'implantation situées dans l'enceinte du Centre de Traitement et de Valorisation énergétique, indiquées en Figure 14 :

- Une zone dans la limite Est de l'extension du C.T.V (Pz8), en bordure du site ; de façon à suivre la qualité de la nappe en amont absolu du site.
- Une zone dans la limite Ouest de l'extension et la limite Est de la zone du C.T.V. ancienne (Pz9); de façon à suivre les apports de polluants entrés dans la nappe lors de son passage par la zone d'extension.

Le réseau complété de piézomètre permettra ainsi de couvrir l'ensemble du site, pour un suivi régulier de la qualité des eaux souterraines.

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Localisation des ouvrages du réseau de contrôle actuel

Figure 14: Proposition d'implantation de deux nouveaux piézomètres Pz8 et Pz9.

 ANTEA GROUP	

Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27) Mise à jour de l'esquisse piézométrique dans le cadre du projet d'extension du site et définition de l'implantation de nouveaux piézomètres

Rapport 84858/A

Observations sur l'utilisation du rapport

Ce rapport, ainsi que les cartes ou documents, et toutes autres pièces annexées constituent un ensemble indissociable ; en conséquence, l'utilisation qui pourrait être faite d'une communication ou reproduction partielle de ce rapport et annexes ainsi que toute interprétation au-delà des énonciations d'Antea Group ne saurait engager la responsabilité de celle-ci. Il en est de même pour une éventuelle utilisation à d'autres fins que celles définies pour la présente prestation.

Il est rappelé que les résultats de la reconnaissance s'appuient sur un échantillonnage et que ce dispositif ne permet pas de lever la totalité des aléas liés à l'hétérogénéité du milieu naturel ou artificiel étudié.

La prestation a été réalisée à partir d'informations extérieures non garanties par Antea Group ; sa responsabilité ne saurait être engagée en la matière.

Fiche signalétique

Rapport

Titre: Centre de Traitement et de Valorisation énergétique de Malleville-sur-le-Bec (27).

Esquisse piézométrique et Implantation de deux nouveaux piézomètres aval

Numéro et indice de version : 84858/A

Date d'envoi : 20/06/2016 Nombre d'annexes dans le texte : 0 Nombre de pages : 25 Nombre d'annexes en volume séparé : 0

Diffusion (nombre et destinataires):

1 – Sébastien FABRE

Client

Coordonnées complètes : SDOMODE PA LA SEMAILLE 27300 BERNAY

Téléphone : 02 32 42 74 32

Télécopie :

Nom et fonction des interlocuteurs : Chef de pôle CETRAVAL

Antea Group

Unité réalisatrice : Direction Régionale Paris – Centre – Normandie – Implantation de Rouen Nom des intervenants et fonction remplie dans le projet :

late ale sute un esperancial . Denesit LEDEN/EDEN/

Interlocuteur commercial: Benoit LEREVEREND

Responsable de projet : Marie JOLY Auteur : Cristina BICALHO BIZET Secrétariat : Sandrine LEMENUEL

Qualité

Contrôlé par : *Marie JOLY*Date : 20/06/2016 - *Version A*

N° du projet : NIEP160255

Références et date de la commande : 08/06/2016

Mots clés : DECHARGE, PIEZOMETRE **Commune :** Malleville-sur-le-Bec

Annexe IX : Etude hydrogéologique 2021 et relevés des piézomètres Z8, Z9 et Z10 en 2019, 2020 et 2021

SDOMODE Commune de Malleville sur le Bec

Commentaire concernant les résultats des analyses effectuées en février, juillet, septembre 2021 et janvier 2022 au CET

Par O.GRIERE Hydrogéologue agréé en matière d'hygiène publique pour le département de l'Eure

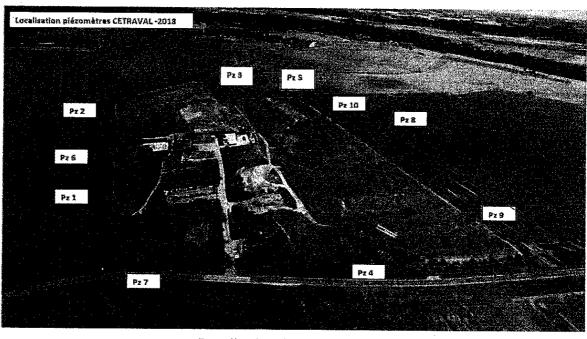
O.GRIERE 12, rue Blanche Hottinguer 77600 GUERMANTES

INTRODUCTION

Dans le cadre de la mission qui m'a été confiée pour émettre un avis sur les résultats des contrôles effectués sur les différents points d'eau implantés sur le site du Centre d'Enfouissement Technique de classe II du SDOMODE (anciennement SIDOM du Roumois) sur le territoire communal de Malleville sur le Bec ainsi qu'aux environs, le présent document constitue mon commentaire relatif aux prélèvements réalisés durant l'année 2021 en février, juillet, septembre et en janvier 2022 sur certains points.

I. . PRESENTATION

Le présent rapport concerne l'avis de l'hydrogéologue agréé sur les résultats d'analyses des eaux souterraines et des eaux collectées dans les bassins, prélevées au CET de Malleville sur le Bec.

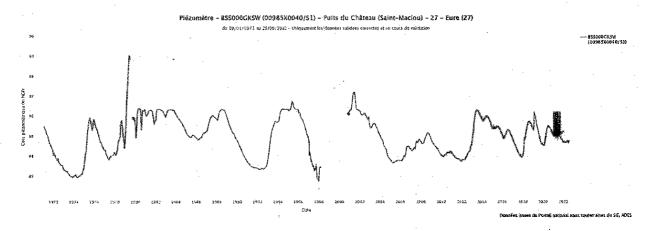

Plus de vingt années se sont écoulées depuis le début des prélèvements et des analyses en date d'octobre 1996. Mais depuis le nouvel arrêté préfectoral d'autorisation d'exploitation obtenu le 6 août 2010 une nouvelle fréquence d'analyse des eaux issues des piézomètres et des sources a été décidée.

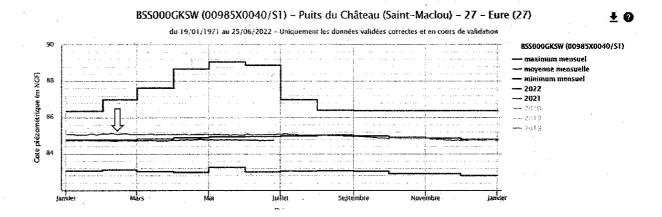
II. POINTS DE PRELEVEMENT

Les résultats des analyses sont synthétisés sur les fiches ci-jointes par point de prélèvement :

- AVAC : piézomètre 1
 AVNC : piézomètre 2
 AMAVZE : piézomètre 3
 AMAVCD : piézomètre 4
 AMZE : piézomètre 5
- •Piézomètre 6
- •Piézomètre 7
- •Source Marnot
- •Source du Moulin à Papier
- •Piézomètre 8
- •Piézomètre 9
- •Piézomètre 10
- •Casier 8 bassin Nord
- •Casier 8 bassin Sud

La localisation des piézomètres est indiquée figure suivante.




Localisation des piézomètres du site

III.OBSERVATIONS

III 1 Prélèvements du 17 février 2021

Le piézomètre de Saint Maclou permet d'apprécier la situation hydrogéologique.

Il est possible de constater que les niveaux se situaient au-dessus de la moyenne mensuelle pour le mois de février.

Les piézomètres PZ1 à PZ7 ont été échantillonnés le 17 février 2021, les PZ8 à PZ10 ont été échantillonnés le 11 février.

III.1.1 Eaux pluviales

Les eaux pluviales ont été échantillonnées le 17 février 2021 et concernent les bassins Nord et Sud du casier 8. Le bassin Sud a fait l'objet d'une contre analyse le 13 avril 2021.

Il est possible de noter:

Pour le bassin Nord:

- sune conductivité faible de 239 μS/cm,
- un pH basique de 7,9,
- \Rightarrow une DCO <5 mg/l O₂.
- \$\text{du COT à hauteur de 3 mg/l,}
- un indice Hydrocarbures <0,1 mg/l.

Pour le bassin Sud:

- une conductivité très élevée de 2660 μS/cm (valeur anormalement forte),
- **♦** un pH de 7.9.
- \$\text{une DCO de 391 mg/l O₂}
- 🦫 du COT à hauteur de 120 mg/l,
- un indice Hydrocarbures <0,1 mg/l.

Il convient donc de noter une minéralisation très élevée pour le bassin Sud ainsi qu'une DCO anormalement élevée. Il en est de même pour le COT.

La contre analyse du 13 avril portait sur le COT et la DCO. Les valeurs obtenues sont de :

- \$\\ 48 mg/l pour le COT.
- \$ 197 mg/l pour la DCO.

Ces valeurs bien que plus faibles témoignent cependant de venues d'eau contenant de la matière organique.

III.1.2 Eaux souterraines

Les points échantillonnés sont les piézomètres PZ1 à PZ10 ainsi que les sources Marnot et Moulin à Papier.

Du point de vue des paramètres physico-chimiques, les valeurs du pH augmentent à l'exception des PZ2 et PZ7 pour lesquels le pH reste stable; les Pouvoirs d'Oxydo-réduction ont tendance à diminuer légèrement sauf pour les PZ8 à 10 qui présentent des pouvoirs d'oxydo-réduction plus élevés. En ce qui concerne le COT, il est possible de noter une augmentation pour les PZ1 à PZ7 tandis qu'il diminue pour les PZ8 à PZ10. En ce qui concerne la conductivité, les dernières mesures indiquent une augmentation sur l'ensemble des piézomètres à l'exception des PZ3, PZ5 et PZ9 pour lesquels la conductivité diminue.

Remarque: depuis plusieurs bulletins d'analyses, les pH sont donnés avec indication de la température de l'eau; par conséquent les comparaisons deviennent plus délicates. En fonction de la température, les pH pourraient varier de l'ordre de 0,2 environ.

Il est possible de remarquer que :

- Les teneurs en COT mesurées au droit du CET sont comprises entre 0,64 et 2,5 mg/l alors que celles mesurées sur la source Moulin à Papier et sur la source Marnot sont respectivement de 0,7 et 0,82 mg/l,
- Les pouvoirs d'oxydo réduction sont du même ordre de grandeur au droit du CET par rapport au niveau des sources suivies.

Les graphiques d'évolution (pour les piézomètres) des 4 paramètres (pH, conductivité, pouvoir d'oxydo-réduction et COT) sont joints en annexe ainsi que les tableaux récapitulatifs des différentes analyses (pour les ouvrages ayant fait l'objet d'un prélèvement).

Du point de vue de la pollution organique, les valeurs de la DCO restent en deçà du seuil de mesure.

Du point de vue des paramètres physico-chimiques, les valeurs mesurées sur l'ensemble des points contrôlés sont conformes aux normes en vigueur, aucune anomalie n'est à signaler. Il convient toutefois de noter des concentrations en Nitrates variables selon les piézomètres avec des valeurs comprises entre 5,12et 25,6 mg/l au droit du site et de 36,1 mg/l sur la source Moulin à Papier et de 38,6 mg/l sur la source Marnot.

Du point de vue des substances indésirables et toxiques :

En ce qui concerne les métaux la campagne de février 2021 a confirmé la présence de métaux (concentrations en µg/l).

	PZ1	PZ2	PZ3	PZ4	PZ5	PZ6	PZ7	PZ8	PZ9	PZ10
Nickel	4,4	3,1	3,2	1,6	3,0	4,5	2,5	1,8	2,0	2,9
Chrome	0,11	0,12	<0,05	<0,05	0,11	0,14	0,79	0,22	<0,05	<0,05
Zinc	4,6	2,1	8,3	2,4	2,8	2,3	2,3	13	20	18
Cuivre	0,9	0,8	0,5	0,6	0,8	1,7	1,2	0,8	0,4	0,7

De plus, il convient de noter la présence de mercure sur PZ1 (0,05 µg/l).

Ces dernières mesures ne permettent pas de déduire une évolution générale. Pour certains piézomètres les concentrations diminuent pour un ou plusieurs paramètres tandis que pour d'autres des augmentations sont notées.

Il apparait cependant que les derniers piézomètres réalisés (PZ8 à PZ10) présentent les plus fortes concentrations en Zinc (constat déjà effectué lors des précédentes campagnes).

Par conséquent, les dernières analyses effectuées permettent de confirmer la présence de ces éléments.

Du point de vue des COV, HPA, PCB et des BTEX, les valeurs sont en deçà des seuils analytiques.

En ce qui concerne les Organo Halogénés Adsorbables (AOX), tous les piézomètres présentent des concentrations comprises entre 10 et 25 μ g/l à l'exception de PZ8 (230 μ g/l), PZ9 (140 μ g/l) et PZ10 (76 μ g/l). Les sources Marnot et Moulin à Papier présentent des concentration respectivement de 11 μ g/l et <10 μ g/l.

Il conviendrait de comprendre pourquoi les piézomètres 8 à 10 présentent de très fortes concentrations en AOX. Ces analyses viennent confirmer les précédentes analyses.

D'un point de vue bactériologique, il convient de noter :

- La présence à nouveau d'Entérocoques intestinaux sur PZ8, PZ9 et PZ10,
- Concernant les Coliformes et Escherichia coli, les résultats sont illisibles sur la moitié des piézomètres à l'exception des PZ2, PZ3, PZ4, PZ6 et PZ7.

Les sources Moulin à Papier et Marnot présentent des résultats illisibles pour les bactéries Coliformes et Escherichia coli

Les derniers piézomètres se distinguent des piézomètres plus anciens. Il conviendrait de vérifier la conception de ces ouvrages.

III 2 Prélèvements du 23 juillet 2021

Ces prélèvement concernent les eaux pluviales des bassins Nord et Sud du nouveau casier.

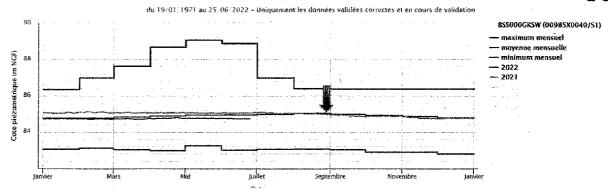
Pour le bassin Nord:

- une conductivité faible de 164 μS/cm,
- ♥ un pH de7,9,
- \$\text{une DCO de 12 mg/l O₂.}
- ⇔ du COT à hauteur de 7 mg/l,
- un indice Hydrocarbures < à 0,1 mg/l.

Il convient donc de noter une augmentation du COT mais une diminution du pH.

Pour le bassin Sud:


- une conductivité de 1060 μS/cm,
- ⊎ un pH de 7,3,
- \$ une DCO de 117 mg/l O₂,
- b du COT à hauteur de 53 mg/l,
- un indice Hydrocarbures <0,1 mg/l.


Il convient donc de noter une minéralisation plus élevée que sur le bassin Nord ainsi qu'une DCO plus élevée. Il en est de même pour le COT (tendance déjà constatée lors du précédent prélèvement).

III.3 Prélèvements des 15 et 30 septembre 2021

Ces prélèvement concernent les eaux pluviales des bassins Nord et Sud du nouveau casier ainsi que l'ensemble .

Le piézomètre de Saint Maclou permet d'apprécier la situation hydrogéologique.

Il est possible de constater que les niveaux se situaient au-dessus de la moyenne mensuelle pour le mois de septembre.

Les piézomètres PZ1 à PZ7 ont été échantillonnés le 30 septembre 2021, les PZ8 à PZ10 ont été échantillonnés le 15 septembre.

III.3.1 Eaux de surface

Pour le bassin Nord:

- une conductivité faible de 246 μS/cm,
- \$\text{ un pH de 7,5,}
- ⇔ une DCO de 58 mg/l O₂,
- ⇔ du COT à hauteur de 20 mg/l,
- \Rightarrow un indice Hydrocarbures < 0,1 mg/l.

Pour le bassin Sud:

- sune conductivité de 966 μS/cm,
- \$\text{ un pH de 7,5,}
- une DCO de 99 mg/l O₂
- b du COT à hauteur de 36 mg/l,
- un indice Hydrocarbures <0,1 mg/l.

Il convient donc de noter une minéralisation plus élevée que sur le bassin Nord ainsi qu'une DCO plus élevée. Il en est de même pour le COT (tendance déjà constatée lors des précédents prélèvements).

III.3.2 eaux souterraines

Du point de vue des paramètres physico-chimiques, les valeurs du pH restent stables; les Pouvoirs d'Oxydo-réduction ont tendance à augmenter légèrement sauf pour les PZ8 à 10 qui présentent des pouvoirs d'oxydo-réduction légèrement à la baisse. En ce qui concerne le COT, il est possible de noter une augmentation pour les PZ1 et PZ3. En ce qui concerne la conductivité, les dernières mesures indiquent une augmentation sur les piézomètres PZ3, PZ5, PZ8 et.

Remarque: depuis plusieurs bulletins d'analyses, les pH sont donnés avec indication de la température de l'eau; par conséquent les comparaisons deviennent plus délicates. En fonction de la température, les pH pourraient varier de l'ordre de 0,2 environ.

Il est possible de remarquer que :

- Les teneurs en COT mesurées au droit du CET sont comprises entre 0,49 et 2 mg/l alors que celles mesurées sur la source Moulin à Papier et sur la source Marnot sont de 0,47 mg/l,
- Les pouvoirs d'oxydo réduction sont du même ordre de grandeur au droit du CET par rapport au niveau des sources suivies.

Les graphiques d'évolution (pour les piézomètres) des 4 paramètres (pH, conductivité, pouvoir d'oxydo-réduction et COT) sont joints en annexe ainsi que les tableaux récapitulatifs des différentes analyses (pour les ouvrages ayant fait l'objet d'un prélèvement).

Du point de vue de la pollution organique, les valeurs de la DCO restent en deçà du seuil de mesure à l'exception des PZ8 avec 43 mg/l et PZ10 avec 8 mg/l.

Du point de vue des paramètres physico-chimiques, les valeurs mesurées sur l'ensemble des points contrôlés sont conformes aux normes en vigueur, aucune anomalie n'est à signaler. Il convient toutefois de noter des concentrations en Nitrates variables selon les piézomètres avec des valeurs comprises entre 6,81et 25,6 mg/l au droit du site et de 37,2 mg/l sur la source Moulin à Papier et de 40,9 mg/l sur la source Marnot.

Du point de vue des substances indésirables et toxiques :

En ce qui concerne les métaux la campagne de septembre 2021 a confirmé la présence de métaux (concentrations en $\mu g/l$).

	PZ1	PZ2	PZ3	PZ4	PZ5	PZ6	PZ7	PZ8	PZ9	PZ10
Nickel	5,5	2,4	3,3	2	2,8	4,2	5,3	3,3	1,7	14
Chrome	0,41	0,2	0,14	0,16	0,22	0,23	0,48	0,44	0,22	0,71
Zinc	22	2,4	7,5	2,3	2,1	2,7	18	49,2	13,8	41,2
Cuivre	0,9	0,4	0,6	0,4	0,2	0,9	0,7	1,8	0,7	2,2

De plus, il convient de noter la présence de plomb sur PZ1 (0,4 µg/l) des traces de mercure sur PZ2, PZ3 et PZ5. Signalons également les concentrations élevées en Zinc sur PZ8 et PZ10 ainsi qu'en cuivre. Il faudrait demander à l'entreprise de forage ayant réaliser les piézomètres les fiches des graisses utilisées.

Ces dernières mesures ne permettent pas de déduire une évolution générale. Pour certains piézomètres les concentrations diminuent pour un ou plusieurs paramètres tandis que pour d'autres des augmentations sont notées.

Par conséquent, les dernières analyses effectuées permettent de confirmer la présence de ces éléments.

Du point de vue des COV, HPA, PCB et des BTEX, les valeurs sont en deçà des seuils analytiques.

En ce qui concerne les Organo Halogénés Adsorbables (AOX), les piézomètres présentent des concentrations comprises entre 10 et 290 μ g/l . Il existe de fortes disparités dans les résultats avec un maximum sur PZ10 (290 μ g/l), 59 μ g/l sur PZ4 , 68 μ g/l sur PZ8 (230 μ g/l), Les sources Marnot et Moulin à Papier présentent des concentration respectivement de 43 μ g/l et 12 μ g/l. Il conviendrait de comprendre pourquoi les piézomètres 8 et 10 présentent de très fortes concentrations en AOX. Ces analyses viennent confirmer les précédentes analyses.

D'un point de vue bactériologique, il convient de noter :

- La présence à nouveau d'Entérocoques intestinaux sur PZ9 et PZ10 mais aussi sur PZ2, PZ5 et PZ6,
- Concernant les Coliformes et Escherichia coli, les résultats sont illisibles sur les PZ4, PZ8, PZ9 et PZ10.

La source Marnot présente des résultats illisibles pour les bactéries Coliformes et Escherichia coli ainsi que la présence d'Entérocoques intestinaux (4 UFC/100ml). Sur la source Moulin à Papier, des entérocoques intestinaux ont également été mis en évidence (7 UFC/100 ml)

Les derniers piézomètres se distinguent des piézomètres plus anciens. Il conviendrait de vérifier la conception de ces ouvrages.

III.4 Prélèvements du 4 janvier 2022

Ces prélèvement concernent les eaux pluviales des bassins Nord et Sud du nouveau casier.

Pour le bassin Nord:

- ψ une conductivité faible de 271 µS/cm,
- **♦** un pH de7,7,
- ⇔ une DCO de 14 mg/l O₂,
- ⇔ du COT à hauteur de 5,6 mg/l,
- un indice Hydrocarbures < à 0,1 mg/l.

Il convient donc de noter une augmentation du COT mais une diminution du pH.

Pour le bassin Sud:

- ψ une conductivité de 672 µS/cm,
- ♥ un pH de 7,3,
- \$\text{une DCO de 38 mg/l O₂,}
- ♦ du COT à hauteur de 15 mg/l,
- un indice Hydrocarbures <0,1 mg/l.

Il convient donc de noter une minéralisation plus élevée que sur le bassin Nord ainsi qu'une DCO plus élevée. Il est cependant possible de noter que la conductivité a diminué depuis la précédente campagne d'analyses.

Il en est de même pour le COT (tendance déjà constatée lors du précédent prélèvement).

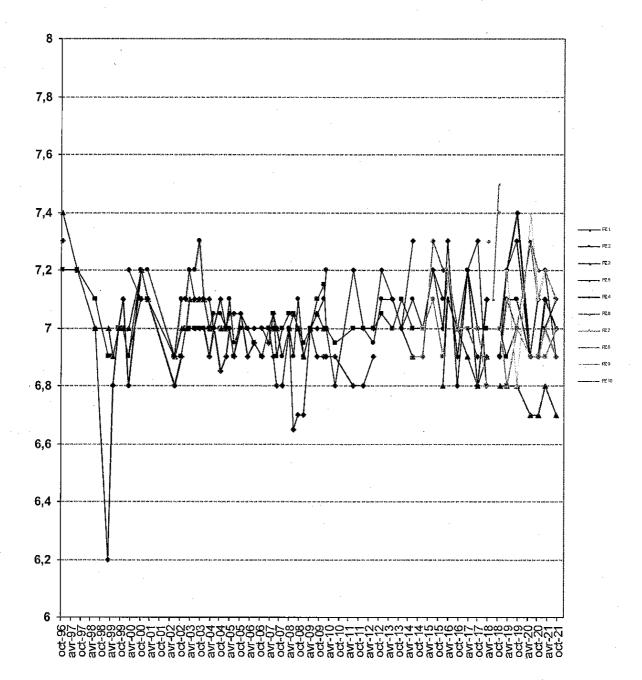
IV. CONCLUSIONS

Concernant les piézomètres, les campagnes de prélèvement de février et septembre 2021 ont confirmé la présence de métaux. Il est difficile de distinguer les tendances. Ces deux campagnes confirment la présence de métaux avec des concentrations plus élevées au droit des nouveaux piézomètres.

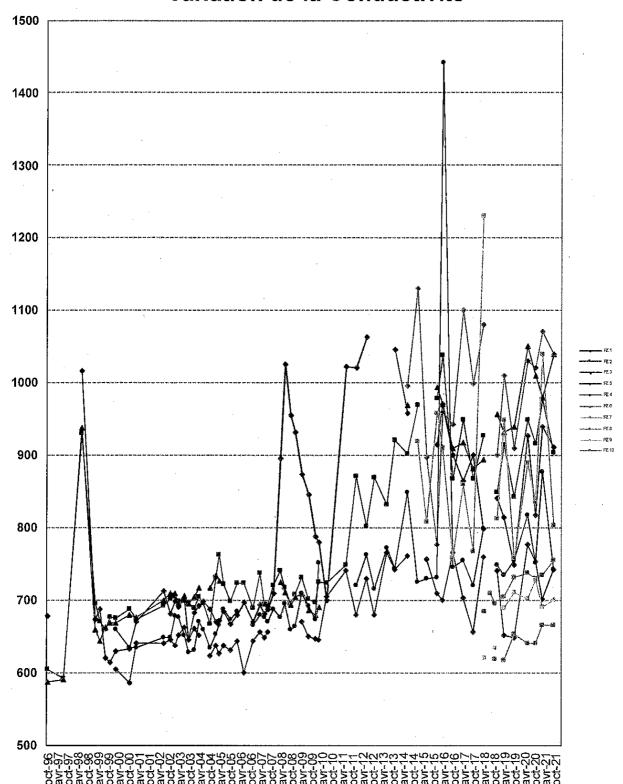
La présence d'AOX avait été mise en évidence lors des précédentes campagnes, celle-ci est confirmée avec des concentrations élevées sur les nouveaux piézomètres en février et septembre 2021, il convient de surveiller ce paramètre.

D'un point de vue bactériologique, les résultats n'étaient pas bons lors des deux campagnes sur différents piézomètres.

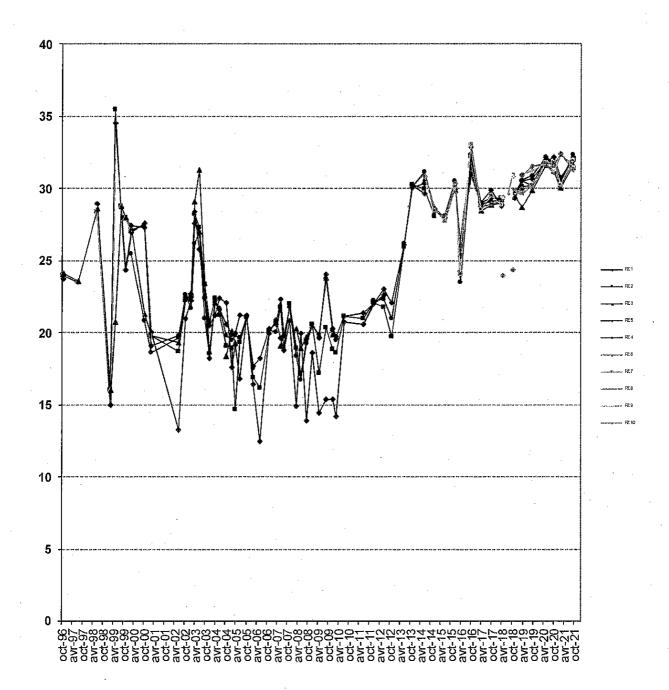
Ces résultats ne sont pas satisfaisants.

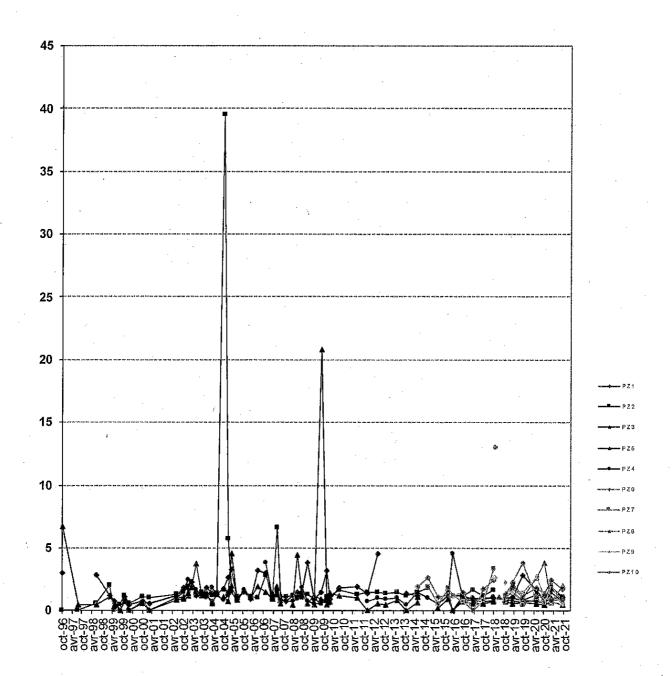

Il conviendra de suivre l'évolution des concentrations en métaux et de rechercher la ou les causes entrainant une pollution bactériologique des eaux au droit du site.

Guermantes, le 16/08/2022



O.GRIERE Hydrogéologue Agréé pour le département de l'Eure


Variation du pH


Variation de la Conductivité

Variation du Potentiel d'Oxydo-Réduction

Variation du Carbone Organique Total

Prélèvement: AVAC (Pz.nº 11

·) [equiraliant, AvA	- (1 Lin 1)																																		
	Année: Unitée NORM	1996 1998 E 8/10 16/8	iĝis li en	1090	24/11 3	2000 23/2 38/10	2001	200	271D le	0 120	2003	.0 2/1:	2 17/3	2004	1/AD 1:	2/1 0/2	2005	510	140	2006	6/11 1	10 1 120	2007	26/11	27/3	2908 106 2	5/0 17/	12 6/4	2000	B/12	2010	7 8	22/12	2912	2013
BACTERIOLOGIE								······						1 2050 1															-						
Oxformer Union	n/100 m3 Absent	8 25 Z5V	43 41	+-		41 41	4	230	-	-	430	51		4	43	य स	- 13	- 41	4	610	<10 <	10 21	0 40	<10	- 210	50 10	ax inc	x na	IDAY	Inne	Inst <	8 415		TLOX.	
Stephocogue February	n/100 ml Abrene	4 4	43 (41			41	<1	<1			72			≥100 ·	4.	et et	- 41	<1	<1	<10	41 4	1 41	4	- si	<1	410 4	d . «	1 41	4,1	41	inex <	1 415	412	410	410
Salmondica	IIS I Absent	P 0 0	0 1 0			0	Q				0			0	_		. 0					0									0		0	0	<u> </u>
ORGANI QUE																																			
D.B.O5 D.C.O	mg/L O2	<10 <10 <10 <10				<30	60	<5	\rightarrow	+	<30	-	+	<30	+	+	<30	-				30	-		<0			×6 -<30			- 4	0 20	d)	10	31
	1111911 07 19836358	8 -30] -30					.1. 22				1 -30			120	_		, ~~																1 44		
PHYSICO-CHIEFQUE	(60050)	7.3 7			77.17		7.50		30.1.3		7	7 7		7.1	216 2	10 7		1 305 1	40.	ADE		1 01				n nr. L. c			1	8.9	40 4	9 8.8	100	- 00	-
Conductivité	vä/m essas	878 1010				530 533				9 631			692			21 67					670 E								846			0 1023			
Chloricae	ne/1 200	14 128	18.4			13	13.2				34.1			13.5			14,4				11	5.4			31			17.5	1		1 2	3 30.7	38.2	40	35.4
Scifices Calcinos	ne/1 250	45 4	9.58 9			9 55.8	117	100		-	12			12			13		_	-+	1		+	+	153			7		-		2 61 15 256			
Magnetatum	me/I 60	13.5 23	28.4 12.	8	1 2	23.5	16	15.7	- 15		17.4		+-	16.3			35	$\overline{}$		_	- 2	1.9	\neg	-	25,5			20,			1 21	.4 24.4	18,5	20,50	15,04
Sodiren Potusiium	ng/3 150 mg/3 12	7.6 8.2	8,76 8			8.3 5.1	0.5 1.7			4	8.8 2.5	-	1	7.3		\neg	7.5		\Box	- 7	2	.5	1		3.3	-	-	2.4		\vdash		9 12.2			
Potential Cusycle-Réduction	Rh	23.7 25.9	19 34	5 28.7					21 22	2 27.6		2.4 20.3	21.2		22.1 13	7.8 19.3		21.2	16,4	12.3			6 16.6	20.6		20 1	10 18	8 16.	15.4	16.4	14,2 20	7 20.0	22	22.8	30.2
Orthophasplates	mg/l	0,11 104	0.03 0.2	!			0,58			1	<0,16	1		0,10			43,10				. 40				<0.16			0,1			a.	0 <0.1	40,15	4D,10	40.19
SUBSTANCES INDESER	ABLES																						-										1		
Nimutos	me/ 50	13 <1	0.0 11.	2			1.8 1				5.8			1.8			. 4	1				,I			1.9		I	. 1,8				4 0,6			
Nitrites Approprien	TOL 0.1	0.05 0.44 50.1 40.1	4.04	72		0.02	<0.02 <0.05			-	<0.02 50.05		+-	<0.02 <0.05			40.02		\rightarrow	\rightarrow	40	.05			9,08			40,0		+		05 +0.00			
Carbaim Ongulinta Totale	mari anni	3 2.6		10.5			qe	1,2	J.8. 1;	2,3		Z 1,8	1,4		1.7	1.3			0.0	3.2			0,8	97		7,3	.5 32			12		8 1.9			
Mangacinso lotal	Jugel 60	7 100				7	1 4				3			.5			15				1		_	-	210			110				69			-6
Zine	mayl 1		004 40.0	N4		0.04 0,01	40,64 40,61		_	+	49,94	_	+	0.01	-	_	49,04					.04		+-	40.04	_	_	40.0		-		04 <0.0-			
Azete Kjektili	ingl 1		0.95			-,	,	-47		-				1 127						_		-			- T		_		-			37 10.0	420	441	0.012
ISUBSTANCES TOXIQUE	9.																															_	_		
Coducion	July 1	45 41	<1 e1			41	41	<f< td=""><td>177</td><td></td><td><1</td><td></td><td></td><td><1</td><td>\neg</td><td></td><td><1</td><td>$\overline{}$</td><td></td><td></td><td></td><td>1 1</td><td>$\overline{}$</td><td>$\overline{}$</td><td>40.5</td><td>$\neg \neg$</td><td>\neg</td><td><0.5</td><td>7</td><td></td><td>40</td><td>.5 <0.5</td><td>40.5</td><td><0.5</td><td>93.6</td></f<>	177		<1			<1	\neg		<1	$\overline{}$				1 1	$\overline{}$	$\overline{}$	40.5	$\neg \neg$	\neg	<0.5	7		40	.5 <0.5	40.5	<0.5	93.6
Noterina	μ <u>ρ</u> Π 1	0.05 <5				9.3	÷0.3				-0,3			-0.3			<0.3					13			0,3			0,85				3 <0,3			
Nicket Plomb	ne/1 50	45 10	3 1 46			<4	44	44				5		7			. 15					5	Τ.	ļ	9			. 45		-	4			7	6.1
Direction total	2 pg 3 50	45 45	বা ক			41 0,6	40.5	4			-2		┥—	-2	-	_	Q		\rightarrow	-		2 :	+	+	42	-	+	-2		\leftarrow	45			- 45	3,5
Elein	NAT 9885339	410	<10	+		40	90.01	<10	-	_	1 12		+	<50	. !	_	<10		-	-+		.01	+	1-	<10			-	+-	\leftarrow			110	- 4	-2
AOX	HAA BARRA	410	17 970			10	17	10	\neg		12			13	*		14			— 			_		21			20		_		0 30			13
HYDROCARBUNESARO	STEER PLONING																													=	_		_		
Descine Control Control		a .		,	- 1	41	41	<1			-11	1.	1	<1			1 4		\neg	•		1 T	$\overline{}$	1	41		\neg	- 4	_	$\overline{}$	- (1		+	4	- 41
Tolerine						2	-41	-11			<1		-	41	-		<1	-	\neg				-	-	<1			- 41			41		-	<1	41
Xytica (orar-p)	μgil					<1	- <1	<1			<1		1	<2			ব				-				<1			٠,			41			<1	
Ellythapsine						4	41	<1			41		1	<1			<1				<				41			-11	1		<1	<1		<1	41
Сшони		8 1				4		<1	•		<1			ব			41		[1			-1				1	\perp		_1	Ь.		
POLYCHLORGEI PHEN	rLs				-																								·			_	т —		
Acrehier 1260	jugel 5:1	T				0.02	40.02				<0.02			<0.02			40.02				4)			1	<0.02						<0,			<0.05	
Arothir 1254		-	\vdash	-		0,02	40,02 40,02				e0/05	—	4	<0,02	_		40.02					50.	+ "	1	<0,02	_			1	+	<0,			40.00	
Acceldor 1242	jigel 0,1				4	0,02	40,02	<0.03			e0.02			40,02		1	40.02	لسبا			49	.02		٠	40.02	Щ.,	Щ.,		٠	طححة	<0,	05 00.0	ч	<0.95	
HYDROCARBURESPOL		MATIQUES																												=		Ţ			
l-luncamitàna	Jug/1			+		.005	47,005				4 0.05			×0.005	-		<0.005						1			_									
Benzo (b) Buortollièno Benzo (k) Dinrzathène	ug/l	<u> </u>	-+	-		.005	40,005		-	-	40,05		+	40,005	-	-	<0.005		\rightarrow	-	-	+	+	-	\vdash	-		+	+	\vdash	+	+	-		
Bailzo (s) Pitára	us/ 0.01	7	-	1		.005	<0.005		-	+.	40.05	-	+	<0.005 <0.005	+	+	<0.005		\rightarrow	\rightarrow	- 40.	02	+	+	<0.002	+	+	<0.00	<u>-</u>	-	5DD	02	<0.00°	90,002	<0.00Z
Bonzo (g,lçi) piryibin	11 ET 1			1	ď.	3.02	40,02	40.02			<0.02		+	40,020			<0.02		-+		-1~	1	+-	1				100	Ť		-1-7"	7	1		
Indiano (1,2,2-od) por tra	lagu l	i				0.02	40,02				<0.02			<0.020		L_	<0,005	i																	
Somme death, P.A. [6]	NSI 03	<u> </u>	1		*(1.013		40,08		1	<0,06			n,d	\perp	-	n,d	$1 \Box$	$ \mathbf{I}$	$-\mathbf{I}$	<0	06	-1		≪0.06			43.01	V j	$\perp \perp$	<0,1	(a)	40,03	<3.03	≪9.69

nos délecté Lpace Inc

Prélèvement: AVAC	(Pz n°	1)		į	ļ	ļ					-]		<u></u>
	—	née:	2914	i	2015	 _	016		1		i		2019	 	020	-	21
	Unités			ļ	22/12	8/3	14/9	29/3	28/9	29/3	6/11	7/3	30/9	29/6	1/10	17/2	30/9
BACTERIOLOGIE	Oracoa	HOTOR		†~·		- 40	140	29/5	20/0	2000		175	5073	APIO	1210	1772	349
Colifornia Totaux	n/100 m1			1	1	<30	<1	Filsible	Illisible	<1	Illisible	-1	illsible	illalbia	dis Die	illebie	41
Colifornes Thermetelémats	n/160 m1	Absonce		<u>ا ''</u>	<1	<30	41	Flisible	Illisitie	41	Illaible	41	lifethie	lilisible	IRIS Role	illisitée	45
Streptocoques Filosox	p/100 #1	Absence]	<1	<30	1	<1	<1	<1	5	<1	<1	<1	e	स	4)
Salmondles	n/5 l	Absence	ļ	ļ.,	abs	abs	aba	aba	aba	aba	abs	abs	non délecté	non détacté	non détecté	non détacié	non détenté
ORGANIQUE				 		 	 -	_	-		 `	_	 			i	
D.B.05	me/LC2	W 900	ব	۱	<1	<3	<1	41	<1	<1	<1	<1	<1	<1	<1	<1	«1
D.C.O	mg/I C2		<30	Ī.	<30	<16	<30	<30	<30	<30	<10	<5	21	- 6	- <5	<5	. 45
	1	ļ	1	Ϊ													
PHYSICO-CHIMIQUE	-	NAME AND ADDRESS OF THE PARTY O	1	١	<u> </u>						<u> </u>		-				
pH å 20°€			6,9	ļ	7	7,2	6,9	7,2	8,8	7,1	7	7,2	7,4	6,9	8.9	7,1	7
Conductivité Chlorura	≪S/cm	100 TAN	958	ļ	914	970	901	864	900	799	841	814	749	927	818	940	911
Sulfates	mg/l	200 250	32 13	ł~	31.5 14.6	15	21,1	20,8	32,0 17	25,1 26,8	25,8	28,8	25,6 26,6	29 35	25.6 27.1	34,6 43,2	31,4
Calcium	ma/l	NO SERVICE	180,6	١	177,77	150	171.04	166,98	175.11	139.4	154.17	157.68	131	200	140	160	160
Magnésium	mg/l	50	17,09	! ~	16,63	13	1	18,69	18.23	20,8	20,81	19,16	19.6	19	17	17	17
Prélèvement: AVAC			1	-	-							1 .		1			
	11		· · · · · · · · · · · · · · · · · · ·	···	********		1			ì		····	}		·····	i	ł
		née:	2014	Į	2016		01G		17		018		2019		20		(21
BACTERIOLOGIE	Unités	NORME	27/8		22/12	8/3	14/9	29/3	28/9	29/3	8/11	7/3	30/9	29/5	1/10	17/2	30/8
Colifornies Totaux	n/100 mJ	25025 No.	 	ļ	- 2	<30	ব	Eligible	illsible	ব	(fisible	<1	illsible	illslite	Illsible	efc£allii	<1
Colifornes Thermotolémus	n/100 ml	Absence	_			<30		ilisible	illsible	4	Itisible	<1	illisible	Ilisible	Histole	Illa pla	- 21
Strept occipies Pécaux	n/100 ml	Absence			×1	<30	2	<1	41	et.	6	41 .	<1	. <1	7	<1	<1
Salmondles	n/S I	Absence		"	abe	abe	Bpa	_ aba	aba	abs	303	BhB		non détecté	non détenté	non détecté	
ORGANIQUE	-	i Kuranaway				1		ļ <u>.</u>									
D.B,O6	rtg/1 C2		<\$9		<59	<27	<59	<59	<69	<69	459	<9	<1	<1	49	<9	49
D.C.O	mg/I C/2		<68	٠	<88	<39	<80	<88	<88	<88	488	<13	115,21184	161,93026	<13	<13	<13
PHYSICO-CHIMIQUE	-		!		-	<u> </u>	_	<u> </u>	<u> </u>		<u> </u>	_	105,09737	155,97105			
pH 4: 20°€	†	A-10-1-1588	-28,76	***	-24,027	-47	61,822	-24 3203	-21,5887	-21.18	-20,6073	-14,862	99,540132	162,99145	-25,768667	-27.873333	-25,706887
Conductività	z5/em		94,481	۳.	-86,211	-118,91	8.78		82,8236	-76,6914		-89,3859	93,952895	150,01184	-82,395235	-93,070476	
Chlorurga	mg/l	14.2857	-160.2		-148.4	-180,83	-48,262		143,578		-134,524		68.426658	147,03224	-139,02381		
Sulfitos	mg/f	-42,657	225,02		-210.58	258.74	-103,304		-204,533		191,482	-178,467	82,858421	144,05263	196,65238	-223,48478	-214,01238
Calcium	mg/l		-291,65		-272,76	-326,66	-168,346	-261,233	-265,488	-239, 286	-248,44	-232,991	77,311184	141,07303	-262, 28095	-28B,661B	-276,78095
Magnésium	mart.	-157,14	-357,37	L.,	-834.95	398.57		320,459	-326,443	-293,817	305,399	-287,528	71,753947	138,09342	308,00952	-363,65905	-339,64952
Prélèvement: AVAC	(Pz n°	1)		L.	L	<u></u>	L	L		L	<u> </u>	L	<u> </u>				L
		<u> </u>									1				1		
		160:	2014	٠	2016		018		И7		119		2019		20		21
BACTERIGLOGIE	Unites	NORME	27/8		22/12	8/3	14/9	29/3	28/9	29/3	8/11	7/3	30/9	29/5	1/10	17/2	30/9
Colifornes Totalix	n/100 ml	44			3	<30	. 4	Illelble	Illisible	<1	liteible	<1		Illisitie	Misible	lifisible	<1
Colifornes Themestoldrants	n/100 m1	Absence			<1	<30	- 41	Misible	illistbro	41	IFEGEDIO	<1	ilialbio	IIIsitizo	ilisible	IIIsible	41
Streptoconques Fécanos	Lat 00 Ua	Absorto		mi	41	<30	3	<1	<1	4	7	-41	<1	<1	8	<1	
Salmontiles	n/51	Absence			aba	Bibs	abs	abs	abe	abs	abs	abs	non déteaté	non dátaatá	non détaaté	non dátectă	non détenté
								<u> </u>									
D.B.07		: 300597:00	<117		<117	<51	<117			<117	<117	-		s1	s17	<17	
D.C.O	mg/I C2		5146		<148	<83	<148	<117	<117 <148	<148	<148	<17	<1 88,198711	135,11382	<21 <21	<21	<17 <21
5.0.0	High Cz		1140	-	-140			1170	1140	-140	1 140		80,839474		- 121	121	761
PHYSICO CHIMIQUE	}			~~i		1		·					85,082237	129,15461			
µH à 20°C		20.2	-423.09		397,13	-438,49	-213,3BB	-379,886	-387,398	-346,349	-362, 357	-342,061	49,525	128,176	365,5381	-419,05619	:402,3181
Conductivité -	≠S/cm		-488,81	[]	459.32	-536.4	-268,43	-438,911	-448,353	-402,88	-419,318	-398,586	43,987783	123,19539	-422,16687	-484, 25333	465,08667
Chlorura	mg/l	214,29	-554,63		-521,5	608,31	-323,472	-496,137	-509,306	-457,411		451,131	38,410526	120,21579	478,79524		527,85524
Stilfates	mg/l	271,13	-620,26		-583,68	676,23		-567,383	-570,262	-911,843		-505,666	32,853269	117,23818	-535,42381	-614,84762	690,62361
Caltium			685,97		-645.87	-748,14	-433,556		-631,217	-688,474	590,19	-660,201	27,298063	114,25868	592,05238	-579,84476	-853,3923B
Magnesium	mg/L	-385,71	-761.7		-700,D5	-816,03		-876,916	-692,172	-621,006	-B47, 14B	-614,736	21,736816	111,27697	-648,68095	-745,0419	-718, 16098
Indáno (1,2,3-cd) pyráno Somme des H.P.A (6)	= <u>₹</u> /1 ==	0,2	<0,005 <0,005		<0.005	<0,02	<0,005 <0,005	<0,005	<0,005	<0,006	<0,005	<0,006	<0,005	<0,006	<0.005	<0,0006	<0,0006
OCHURNO CIENTA P. A. (6)	wg/L	_U,3	40,005	l l	ປຸບເວັ		40,005	<0,005	40,005			l					

Prélèvement: AV NC (Pz nº 2)

The column The					•																		
Column C		Armon 1998 LP97	1008	1919	2000 20	01 2002	2003		2004		2095		2000	31	107		2008		1 2	110	2011 2	112 20	J12
Second Part	na correspondentes	UNHÃE NORME 1000 3U7	22/6 10/2 8/5	58 2411	23/2 16/10 22	22 206 200	10/1 12/2 16/6	49 212	17/3 250	11/10 1 13	17/3] 20/8	5/10 14/2	25/6 1/11	13/3 12/0	284 2851	2773 10/8	299 17	V12 EVA 488 S	112 112	207 86	22/12 20/6	22/11 3/8	23/11
Company Comp	Colligemes Totales	W100 = 1 (200 (200 (200)) - 1	1 43 6		41 4	1 (1)	- 4	- 41	0 41	41 4	1 41 (7	(1 6	Inex 85	<10 Hex	lows 120	410 41	Inex	1 41 41 2	14K 48	3 41	Inex Isex	47 41	low
STREAM	Cultivanite The moroides	U n'it'ûnit Abence 41 i 41	c1 43 61	1		1 (1	9				1 41	410 41	<10 <10	<10 410	41 <10	410 <1	IMM 4	c) <1 <1 3	(0X 41	41 415	<15 516	415 415	<15
Section Sect		n/(c0 m) Absenta 34 1 7	d 93 d		41			- (1					C10 - c1	न न	9 4		4 4	11 41 41					
## STATE OF COLUMN STATE OF CO		(A) Asignite O D			· !	<u>, , , , , , , , , , , , , , , , , , , </u>									•	1				1 4 1 4	1010	1010	
Fig.																					()		=
Company Comp																				S S	1 30 30	45h 45	- 43
Company Comp		lart or Bellioned and 1 and	130 X 140		40 1	an I de	1 100		100		1 100			′*		1 430		1.39		35 1 45	130 130	100 1 400	123
Second S																							
Column Section Secti																							
The color The		nist 20 18 8.5	12 228 10	0.6 1 0.6	18 12					uur . 72		990 124		22.4	100 1720	20 710	2007 2						
Continue		ing3 250 1 < 5 < 5	Z 0,6 1 1											10		8				19 11	24 18	27 25	26
Section Sect		mpd (\$355555) 117 B5	148 123 114					-				-	-		-				_	120.1 134	200 100	158 148	150
Company Comp		111g4 12D 4,8 8,6	7,8 7 88 7 78		8,4 5,				9.4	+	8,4				-	0,5			_	0.5 9.2	14.1 13.2	10.0 10.1	33,5
Column C	Poternium			i												1,5		1,5					
Part	Potentiel City do-Raduction									181 16					10 22	18,0 17,1	18.48 2	0.9 17.2 20.32 16					
Vision V			Q2 000 V.		105	10 30,10	VB,13		1 0,22		1 70.10		اسممساسمسا	40,10	L	1 40.10		10.10		10.10 10.11	9 100.10 100.10	0.01 10.10	40.14
Vision V	SUBSTANCES INDES R	ABLES																					=
American and 1 Q.1 Q.1 Q.1 Q.1 Q.1 Q.1 Q.1 Q.1 Q.1 Q	Xkpqle2	mpt 50 13 13	15.5 10.5 14.5		11.7	70 7609	148		13.3	-	11.3			10.5		10.8			— 				
Control Cont		mgl 40,1 40,1	<0,1 <0,1		<0,68 =0	DS <0,05	<0,05		<0,08		49,05	1	 	<6,08		40.00		<0.65		904 90	5 40.05 40.05	10.08 10.07	10.01
Cell	Cartone Organique Totals	mpt 2000000 40.5	0.6 2 40,5					1.5 1.3		30.6 5.7			1 2,6		1.1 1.1		. 1 1		.1 1.2	1,8 1,3	1,5 1,6	1.4 1.5	1.2
		Hell 50 A0 5	38 10 41																_				
Company Comp	Zinc .	mu	90.03 0.04 40.0	}									-			1000			_				
Color	Azelo Kjulfahi	ingt L	0,72	1																	1		
Color	STERRANCIST TO COLD	Fq																					
Property			स स स	$\overline{}$	<) (1 41 1	- 1				- 41	1		4		40.6 [T 1	40,5		40,5 40,8	ADP ACP 2	6Q.5 4D,6	90,5
Figure F																							
Company Fig. Company								4															
Fig.										ļ									_				
Part								-		 			 				 	1 4	_				
PROCESSION PRO													 				+ +	16	_				
Design		The Designation of the Control of th					- ' - ' ''		- 12		- 1					1 1		1 1			1 11 140		
Part																1							=
Application Part State Control Contr								 		├			ļ				+						
			-	1				1		\vdash		-			-		+ +		-				
Column C				1				-				—					+					41 41	41
August 120				1						t i							1						
August 120																							
Access A					n esal Lan	N (466)	1 - 1 - 1 - 1			,	1 -0.000					1 -0.00				40.00 40.00	40.05		₩.
Available 1971 10								l		 			\vdash		-		1		-				\vdash
Typicon Typi										 													—
Control Cont					27771		1 4922		19,010												-1 1.9(0)		_
Direct D					2 42 7 11 -1	-41 25-41 500	- 1 - 1 - 2 - 2														\perp		₩=
Sear of Conference 14 18 18 18 18 18 18 18			 					\vdash		 			<u> - </u>		l	+	+ +		-1-	<u> </u>	$+$ \pm	-	—
Constitutivities Not Not Constitutivities Not Constitutivities Constitutivi			\vdash					1 1		\vdash			\vdash		\vdash	+	+ +	 				\vdash	—
								 		-			 	<0.002		<0.002	1	<0.0021		<0.002	<0.002 <0.000	40,002 ×0,002	<0.602
				1 1	0.020 40,0	20 <0,020	40,02		<0,020	T . [<0,028	-	1			1	1		_		1 1 1		
Sommo damRPA(6)		1107															1.		1				
	Sorman doubl.P.A.(6)	jug/1 0.2			×0.08	40,06	60,08	_ [_]	n d		1 64			49.08 [40.0≥)	40.00 F	-1	40,03	<0.03 <0.03	40,03	<0,63

Prélèvement: AVNC	(Pz n°	2)				ļ	Ţ	Į		1				ļ	į		Ţ	
	Ani	i nės;	2	014	Ì	2016	21	016	2	917	1 2	D18	-	2019	2	020	2	021
	Unités	NORMS	27/8	30/12	Ι.	22/12	8/3	14/0	29/3	28/9	29/3	6/11	7/3	30/9	20/5	1/10	17/2	30/9
BACTERIOLOGIE																		
Colifornes Totrux	#100 mE			2	ļ	>20	<30	<1	<1	<1	3	<1	<1	lifalble	<1	<1	<1	<1
Colifornes Thermotolèrants	n/100 m[Absence		. <1	Ι	<1.	<30	<1	` <1	<1	<1	<1	<1	Illaible	<1	<1	<1	<1
Streptocoques Fécaux	a/100 ml	Absence		<1	I	- c1	<30	<1	<1	ব	<1	15	<1	<1	B	<1	<1	4
Salmonelles	n/5 l	Absence		elbs	Į	803	abs	abs	aba	abs	abs	abs	abs	non détecté	non détecté	non défecté	non délecté	non détecte
ORGANIQUE					İ			<u> </u>	Ì		i –	i –				1	 	
D.B,O5	mg/ O2	Sep. 14656.	<1	<1	l''''	<1	3	<1	<1	<1	<1	<1	<1	<1	<1	41	<1	<1
D,C.0	rig/J O2		<30	<30		<3□	<15	<30	<30	<30	<30	430	45	<6	<5	<5	.<5	<5
PHYSICO-CHIMIQUE	:	-			ļ.,,,	 	ļ	-)	-		ļ					-	-
pH å 20°C	1	N. 383	7	7	·	8,9	7.1	7	7	7	7	7 7	6,9	1 7	6,0	6,9	6,9	7
Conductivité	≪8/cm		902	969	···	979	1036	868	948	867	927	849	815	842	948	910	977	904
Chilorura .	mu/l	200	48.4	59.8	ŀ	47.9	50	39.4	49.4	38,6	37.7	32.3	35.9	33.B	40,3	45.6	43	37.5
Sulfates	mg/l	260	24	23	···	18,3	27	23.7	38,9	28,8	48	24,8	46,9	28	36,2	31,7	51,B	34.6
Culcium	mg/l	W. W.	169,93	164.65	····	190,74	160	153,05	166,32	154,87	170,4	154,18	170.83	133	160	160	160	160
Magnésium		50	15.7	15,5	····	8.7	8.5	15,77	16,01				14,89	13,1				
	mg/l									18,18	14,78	14,53			17	14	18	14
Sodium	mg/l	150	23,07	29,56	i	25,61	28	20,89	25,81	19,68	21,11	18,07	19,02	14,1	22	20	24	17
Potastum	ng/l	12	3,78	4,7	h	3,98	4	3,87	4,92	3,63	3.86	2.91	3,15	2,37	3,1	3,1	4,1	3,1
Potential Oxydo-Reduction	Rh	NAME OF THE OWNER, WHEN	29,97	26,07	ļ	30,08	24,13	31,52	28,62	29,35	29,34	29.81	30,14	30,18	31,84	31,66	30,18	31,95
Orthophospholes .	mg/l		<0,15	<0.18	ļ	e0,15	<u> </u>	0,18	<15	40,16	<16	<0,15	<0,15	<0,15	<0.15	<0,15	<0,15	<0,15
SUBSTANCES INDESIRAB	Les				Ľ.,					İ	İ .							
Nitrates	mg/i	50	15,7	15,2	L	20,1	19	16	17	18,1	19,5	17,5	24,9	10,2	16,8	216,3	21	20,8
Nitritos	mg/l	0,1	<0,05	<0.05		<0.01	<0.05	<0,01	<0.01	<0,01	<0.01	<0,01	<0,01	<0.01	<0.01	<0.01	<0.01	#0,01
Ammonium	loari		<0,05	<0.05		0,57	<0.1	<0.005	<0.05	< 0.005	< 0.05	< 0.05	<0.05	0,05	<0,05	<0.05	<0.05	<0.05
Carbone Organique Totale	mg/l	SEC. 15.	1.5	1.8		1,5	1,2	1,2	1,6	1,2	1,6	1,2	1,6	0,82	1.3	0.90	1,9	1,1
Marganèso total	on/l	50	<0,001	<0,50		0.71	<5	1,6	<0,5	40,5	40,5	<0.05	<0.08	0.09	<0,05	<0.08	0.09	0.15
Сціую	ma/l	1	<0,001	0,000,77	• • • • • • • • • • • • • • • • • • • •	0.00173	<0.005	0.00121	0.00052		0.00057	0.00040	0,00020	0,00041	0,00060	0.00050	0,00080	0.00040
Zine	ng/l	5	0.001	<0.005		<0,0087	<0.05	0.0078	<0.005	<0.008	0.0021	0.0019	0.0023	0.0016	0,0044	0,006	0,0021	0,0024
Azeto Kjuldshi	mg/l	1						-,,-			V 47-47	X 4.5.10	0,000	5,5515	0,0011	0,000	,	U,UUL7
SUBSTANCES TOXIQUES		!						_	i	-	<u> </u>			·				
Cadmium	<u> </u>	5	41	<0.20	·	40.20	<1.5	<0.2	40.2	40.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Menairo	78/1	-	<0.06	40,20		40,05												<0,01
Nickel	787	- 60	45	4,7	ļ	3,2	<0,1 <10	<0,015 2,9	<0,016 3,2	<0,016	<0,01	40,01	<0.01	<0,01	<0,01	<0,01	<0,01	0,02
	9B(!				·			2,9		2,7	2,8	2,1	2.3	2,4	2,6	2,8	3,1	2.4
Plomb	28/1	50	<6			<0,5	<10		<0,5	4D,5	<0,1	<0,1	<0.1	<0,1	<0,1	<0,1	<0,1	<0,1
Chrome total	78fl	50	<5	<0,50		<0.50	₹5	<0.5	<0,5	<0,6	0,07	<0.05	<0.05	0,11	0,15	Ø,OB	0,12	0,2
Biagn	-rg/l	Section 2	<10	41		: 41	<10	<1	<1	ব	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	×0,2
AOX	≪gri		83	24		24	12	16	15	17	25	14	24	17	17	32	24	14
HYDROCARBURES AROM.	ATIQUES	\$.				i –	_		_		_				İ	İ	İ	İ
Benzino	ntu/l		<0,02	<0,02		40,02	<0,5	<0.2	<0,2	40,2	<0,2	<0.2	<0,2	<0,2	<0,2	<0,2	. <0,2	<0,2
Tohiène	reg/L	\$155000E	40,5	<0,6	*****	<0,5	<0.5	<0,5	< 0.5	⊲0.5	<0.5	<0,5	<0.6	<0.6	<0,6	<0,6	<0,6	<0,1
Xyléna (a+m+n)	~g/l		40.2	<0.2		<0.2												
Ethylbenzène	=u/l	0.770	<0.02	40.2		<0.2	<0.6	40.2	<0.2	<0,2	<0.2	<0,2	<0,2	<0,2	<0,2	<0,2	<0.2	40,2
Сыщено	org/l					- 11:0												713
POLYCHLOROBIPHENYL												-						
Amehior 1260	arg/l	0,1			·			\vdash	\vdash	-		 -		-		-		· · · · · · · · · · · · · · · · · · ·
				-			-		 		—	_						
Amchior 1254 Amchior 1242	>g(] 78/J	D,1		-	·				H .	_					 			
																	1	
HYDROCARBURES POLYC	YCLIQU	ES ARO															L	
Fluorantière	2H/1	WXXXXX	<0,003	<0,005		<0.005	<0,02	<0.005	40,005	<0.006	<0.01	<0,01	<0,01	<0,01	<0,01	<0.01	<0,005	<0.008
Benzo (b) Ilstoranthène	78/1		<0,005	<0,005		<0,005	<0.02	<0.005	<0,005	<0,005	<0.005	<0,006	<0.005	<0.005	<0,005	<0.005	<0.005	<0.005
Benzo (k) iluqrandiène	- Ngre-		<0,005	<0,005		<0,005	<0,02	<0,005	<0,003	.<0,00\$	<0.005	<0.008	<0,005	<0.005	<0.005	<0.005	<0,005	<0.005
Bonzo (a) pyréno	98/I	0.01	<0.005	<0.005		<0.006	<0.02	<0,005	40.005	<0,006	<0,005	<0.035	<0,005	<0,005	<0.005	<0.005	<0.001	<0.001
Benzo (g.h.i) páryláne	*g/l		<0.005	<0,006	****	<0,005	<0.02	<0.003	<0,005	<0,005	<0.005	×0,005	<0.005	<0.005	<0.005	<0.005	<0.0008	<0,000
Indéno (1,2,3-cd) pyrène	-48/1		, .,				<0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.005	<0,0008	<0,0008
Somme des H.P.A (8)	~q/l	0.2		<0.006		<0,005	-0102		-0,000			0,000	-0,000	-4,000	-5,500			- viciona
A. (4. (4. (4. (4. (4. (4. (4. (4. (4. (4	1	5.4		-0,000		-0,000		L									L	

Prélèvement: AM AVZE (Pz n°3)

	Année:	1 1998 1	1997	1 49	999		1996		20	00	2001	200	12			2603			20	204	20	08 1	20	17	_	21	06			2009		2010
	Unités NORME					8/5		24/11		1B/10		26/8	2/10	16/1	12/3	19/8	4/9	2/12	17/3			17/3		29/0	27/3			17/12	8/4	4/8	9/12	11/2
BACTERIOLOGIE										=																				.,		
Coliformus Totaux Coliformus Thompsoldrants	n/100 ml Absence	15	<1	75	43	230			<1		41 41	<1	_	_		<1		*	9	<1	<1	<1	rinex <10	Inex <10	<1	inex	न	<10	inex	nex	inex	nex nex
Sicentocomus Fécaux	n/100 ml Absence		41	41	43	41			41		×1	-7-				- 24				1 7	c†	<1	16	490	-21	5	<1	×1	<1	nex	41	<1
Sidmonelles	n/5] Absonce		0			0			0	-	0	0				Q.				Ð					0							
																			_	-												
ORGANIQUE D.B.05	nigil O2	<10	<10	< 10	<2	<10	-	-	<10		<10	8				<5				<5	_	_	-		<5	_		-	<5	$\overline{}$		-
D.C.O	mg/I O2	110	<30		1	<40	-	-	39		<30	<30	_			<30				<30	-	-			<30			-	<30			
																						$\overline{}$					_					
PHYSICO-CHIMIQUE pH ± 20°C	T	7.4	7.2	7	1 7	8.9	9.	7	7	7,2	7.1	6.9			7.1	71	7.1	7.1			- 4	7.05	,	7	7	7.05	7	6.9	7	7,03	7	7
Conductivité	uSom 2000	588	591	935	659	844	663	669	698	679	677	700	709	710	695	708	888	701	704	605	734	727	695	694	725	711	694	705	710	686	679	690
Cliforures	mg/1 200	21	16,5	104	18,9	15			14		13,4	13,7				13.5				15,8					15				15,7			
Sulfates	ing1 250	7	< 5	<1	1,65	7			2		41	7			-	<5				В					< 5				8			=
Caloium Maggisium	mg/l 50	125	250 18	166,5	15,3	93 25	_	_	120,5	_	116,8 16,9	125 15,8	_	_		118,3				127,5		_			119,5	_		$\overline{}$	120,6 18,99			
Sociem	ingst 150		8,5	7.7	7.49	8.6	_		7,9		3078	8.2	-		-	B,3				6.6	\vdash	-			7,5	i			7,8			-
Poinssium	mg/l 12	1,1	1,5	0.0	11	7.2			0,9		0.9	0,9				0.8				1,8					0,0							
Potential Oxydo-Reduction	Rb		23.6	28.6	10	20.7	28,8	28	27.3	21,3	19,8	19.32	22,6	22,8	29,1	31,3	23,4	18,72	22,4		20,1	19.30	19.1	19.8	20,3		19,73	20,5	19,8	23.8	19,55	19,7
Orthophorphates	mg/l	17.3	<0.1	0.3	0,13	<0.1		L	0,1		40,15	<0.15				<0.15				0,22					<0.15	<u>. </u>			<0.15		1	
SUBSTANCES NDESTRAB																														\neg		
Mitratos	nuyl 50	10	16	14.5		2,6			15,3		18,9	18,5	=			16,3				13.3					18.2				18			
Nitrites	nul 0,1		<0,01	(0,01	<0,04	<0,02			<0,02		<0,02	0,02				<0,02	——I			<0,02					<0,05				<0,05	\rightarrow		—
Ammonium Carbano Organique Tolnie	nigit mg/t	<0,1 6.7	<0,1 0,5	<0.1 0,5	3.1	₹0,1 0,5	<0.5	0,7	<0.05	0,7	40,05 40,5	<0.05	1,1	1,2	1,9	<0,05 1,3	1,2	1,2	1,2	40,05	0.7	2	1,9	- 8.8	<0.05 0.5	- 22	1.5	0.8	<0,05 1.2	0.9	6.0	0.7
Manganèse total	14g/1 50	320	129	23	<10	18	10.0	0,7	<(0,7	41	-2		1,4	1.0	5	1,6	1,4	1,6	₹	- 0,7	-	170	.0.0	<2	4.4	1.0	0.0	<2	0,0		
Culvro	merl 1		<0.05			<0.04			<0.04		<0.04	<0,04			-	<0.04				0.04					<0.04				<0.04			
Zins	mg/l S	<0.0d	<0,05	<0,05		<0,01			<0.01		< 0.01	<0.04				<0.04				0,04					<0,04				<0,04			
Azote Kjeldahl	mg/l 1			L	1,12																					L						\Box
SUBSTANCES TOXIQUES						_														1	-	\neg			_						T	
Cadmium	μg/l 5	<5	<5	<1	<1	<1			<1		্ব	<1	-			41				<1					<0,5				2,3	<0,5		\neg
Merenro	μg/I 1	0,25	0,16	<0.1	<0,02	<0,3			<0,3		<0,3	<0,3				40,3				<0,3					<0,3				<0,3			
Nickel	μg/1 60	20	6	6	1	<4			¥		<4	<4				40	45			<5					5				<5			
Ploneb	μв/П 50		<5	<5	<1	<1			<1		<1	<2				-72				<2					c2				<2			
Clarence total	րց/1 50	<5		<5	<1	<0,5			<0,5		<0,5	<2				<2				<2					<2				<2			_
Etaln	µg/1	<10 <10		_	<10			-	11		< 0.01	<10 410			-	<0.01 <10				450 12					<10 14				<10		[_
YOX	µg/1	4. 410			13	55			-11		13	<10				<10				12			-		14				<10			
HYDROCARBURES AROM	ATIQUES													1						<u>i</u>		i										
Benzûne	μg/l								<1		<1 ;	<1				ব				<1					ব				۲1			
Τολοέμα	jug/l				Ŀ				3		<1	<1				<1				<1					<1				<1			
Xyléne (o+m+p)	1/8/t			\vdash	\Box				<1		4	41				<1				<2					ব				ব			
Elhythenzine .	jeg/l								<1		<1	<1				<1				<1					<1				<1			
Ctimono	ug/L	E I							<1	Щ		ংশ]	<1				<1					<1							
POLYCHLOROBIPHENYL	s														E		1	-		\vdash	\vdash								1	- 1	·	—
Arachlar 1260	μg/t 0,1	1 1							<0,020	-	<0,020	<0,02	_			<0.02		-		<0,020					<0,020				~		\neg	$\overline{}$
Araditor (25)	μg/L 0,1	 		$\overline{}$					<0,020		<0,020	<0,02		- f	\neg	<0,02				<0,020					<0,020						$\overline{}$	\neg
Aroth(or 1242	rig/l 0.1								<0,020		<0,020	<0.02	1			<0,02				<0,020			=		<0.020			=	=			
TIVEBERASE REPORTED AND THE PROPERTY OF THE PR	SUAL TALLES TO																						\equiv					\equiv				
HYDROCARBURES POLYC		9 -			!				<0,005	-	<0.005	<0,005				40,05				<0,005						 	-		-		-	-
Benzo (b) fluoranihôno	μg/l	1	_			_		-	40,005		<0.005	<0.005	_			40,05				<0.005		_			<u> </u>	_			_			
Denzo (k) iluoranthono	rg/l µg/l	1	_	_	\vdash	_		-	<0.005		<0.005	<0,005	_		\rightarrow	40,05	\rightarrow			< 0.005	\vdash	-				-	—	\rightarrow	_		\rightarrow	-
Henzo (a) pyrésic	µg/I 0,01	 	_	-	$\vdash \vdash$				<0,005		<0.005	<0,005	-			40,05		-		<0,005			-	\dashv	<0.032				40.002	-	-	-
Henzo (g.lt.f.) péryténe	HE/	 -							<0.020		<0.020	<0.020				40,02				<0.020					-4,000							
Indian (1,2,3-ed) pyréne	tral/1	1			-		-	_	<0,020		<0.020	<0,020			_	40.02				<0.020						-	-	─				
Somme desH.P.A (6)	μ ₀ /1 0,2	1 +							<0.06			<0.06				<0.06				n.d			- 1		<0.03	_			<0.03			\neg
									-,						_																	

n d ≕ non détecté

Prélèvement: AMAV	ZE (Pz	n°3)		ļ,	Ĭ			ļ <u>,</u>									i	i
	<u> </u>	<u> </u>		1		Ļ		<u> </u>	:	<u> </u>	i							
		née: NORME		2014	₩	2015	8/3	14/9	29/3	28/9	29/3	0:18 - 6/11	7/3	2019	29/5	1/10	17/2	30/9
BACTERIOLOGIE	CAIIICED	INCHINE	ļ	2110	 	2012	973	1 147	29/3	2013	2913	GI II	113	30/2	280	1210	104	
Colifornies Totaux	Jul L00 ml				1	5	<3.0	<1	<1	9	শ	- 41	41	Illisible	Distible	. Hisible	<1	<1
Colifornes Thermotolémats	ju/100 ml	Absence			1	<1	<30	<1	<1	41	-1	<1	< 1	Illatble	Illisible	Illsibie	1	<1
Streptocoques Fromx	z/100 ml	Absence				<1	<30	18	16	3 .	<1	<1	<1	<1	<1	2	<1	<1
Sulmonella	n/51	Absence	ļ	<u> </u>	ļ	abs	aba	abs.	abs	868	epe	abs	abs.	non détecté	non délecté	non détecté	non détecté	non détect
ORGANIQUE	! 	,										 						
D.B.O5	mg/1 C2		i	-1	····	<1		<1	<1	<1	<1	1 41		<1	<1	<1	<1	<1
D.C.O	mg/1 02			<30		<30	₹15	+30	-30	<30	<30	<30	<5	<5	< 5	< 5	<5	<5
	ì				į			_										
PHYSICO CHIMIQUE	1	Secondonesis	·			<u> </u>		7				.	 			<u> </u>		
pH à 20°C Conductivité	«S/cm		ļ	8.0 989	ļ	6.8 994	7,1 870	910	6,9 91B	6,8 882	9.9 894	957	931	6,8 940	6,7 1050	8,7 1010	980	1040
Chlorures	ing/I	200		25,1	·····	21.9	19	20,4	20	19.3	19,3	20.6	20.7	21.3	22.9	23	20.8	23.8
Sulfitua	ug/L	250	t	13	†	10,9	13	7	7.6	6.9	7.8	8.7	8.6	8.8	13.2	11.4	12.8	13,5
Calcium	mg/L			176,55	1	195,26	150,00	177,41	173,74	167,70	162,00	179,51	179,37	15B,0D	170,00	180,00	160,00	190,00
Mugnésium	mg/l	50	I	19,38	I	21,07	18	20,3	19,51	18,93	19,75	20,19	20,03	17.8	24	19	20	20
Sodium	. mg/l	150		19,82		12,27	9,1	10,71	10	10.18	11.02	10,92	10,83	8.3	12	9,3	9,9	9,7
Pojesium	ang/l	12		1.61		1 70.00	0.8	0,89	0.99	80,0	1,08	0,99	0,89	0,78	0,83	0,73	0,5	0,8
Potentiel Oxydo-Réduction	Rh mg/l	100000000		30.67 <0,15		<0.15	26.24	31.93 <0.15	28,46 <0,15	28,89 <0,15	29,02 <0.15	29,37 <0,16	28,73 =0,16	29,65 <0,16	31,63 <0,15	31,23 <0.16	30,08 <0,16	31,58 <0,16
Orthophospirates	me (AUDION OF		9,10	٠	70,10	_	10.15	10,15	10, 15	*0,15	TU, 15	1 40,10	90,10	40,13	-V, ID	40,10	50,10
SUBSTANCES INDES[RAB	LES		i	1	1			i —	!				<u> </u>		i		·	
Nilvates	mg/1	50		24,8		24,7	20	25,4	28	232,6	23,3	22,7	21,5	23.1	18,9	21,3	16,8	22,1
Mitritos	mg/l	0,1		0,07	ļ	0,04	<0,05	0,02	0,01	0.01	<0,01	0,01	0,02	0.01	0.02	<0,01	40,01	<0.01
Ammonlum	mg/1	en en en en en en en en en en en en en e		<0,05	ļ	<0.05	<0,1	<0,06	<0.05	<0.05	<0,05	<0.05	0,08	<0,08	<0,05	<0.03	<0.05	<0,05
Cerbone Organique Totale . Mangagésa total	mg/f	5Q		1,1 51		59,6	<0,5 15	0,69	0,88	2.88	0,83	1,75	0,86 1.53	0,64 1,63	0.93	0,78	0,97	1,1
Cuivro	mg/l	1		<0,001		<0.005	40,008	0,0017	<0.0005	<0,0005	0.0006	0,0006	<0.00018	0,00037	2,4 0,0004	0,0005	1,5 0,0005	0,0006
Zine	mg/l	5		0.156	l''''	0.158	<0.05	<0.0093	0,0082	0,0085	0,0069	0.0074	0.0071	0.0097	0.014	0,0001	0,0083	0.0075
Azote Kjeldahl	mg/I	-	*****		1					-1,111								
	1		<u> </u>		Ī													
SUBSTANCES TOXIQUES	<u> </u>		: T	<u> </u>	ļ	1		4 - 1		1								
Cislmium	org/1	. 6		<0.05	ļ	<0,2 <0,05	<1,6 <0,1	0,2t <0,015	<0,20 <16	<0.20 <15	0,01 <0,01	0,01 <0,01	0.02	<0.01	<0.01 <0.01	<0.01 <0.01	<0,01 <0.01	40,01 0,04
Merouro Nickel	∞g/i ∞g/i	50		8,4		4.8	<10	4,9	4.4	4,4	3,7	3,9	3,8	4.1	4	3,5	3,2	3,3
Mount	-9/1	50			ļ	≪5	<10	-0.5	<0.50	<0.50	40.1	40,1	e0,1	<0,1	<0.1	40.1	40,1	40.1
Climino total	200	50		<5	1	<0,5	<5	0,6	<0,50	<0.50	0,12	0,05	<0.05	0,1	0,22	<0.05	40,05	0,14
Etain	≪g/l			<10		<1	<10	- 41	<1	<1	<0.2	<0,2	-0,2	<0,2	40,2	<0,2	49,2	<0,2
AOX	∝g/i		l	28	ļ.,	36	<10	<10	<10	- <10	<10	13	16	19	17	39	10	46
HYDROGARBURES AROM	ATIONE				ļ	_							-					
n turouariourea arom Boizino	माध्यम्	808808188508	·	<0.2		<0.2	e0,6	40.2	<0.2	<0.2	40.2	<0.2	<0,2	<0.2	40.2	≪0.2	<0.2	<0,2
Toluène	महरी			<0.5		<0.5	40.6	*D.5	<0,6	<0.5	40.5	<0.5	<0.5	<0.5	<0,5	40.5	<0.3	<0,1
Nyláne (o+m+p)	'agri		******	<0,2		<0.2					-0,0	-0,5	-0,0			~ ~,~		
Ethylboraino	oq/l	0.00		<0,2		<0,2	<0,6	₹0,2	₹0,2	<0,2	40,2	40,2	<0,2	<0.2	<0,2	<0.2	<0,2	<0,2
Сински	90																	
	<u>! </u>			<u> </u>														
POLYCHLOROBIPHENYL Arachier 1260		0.1			.,				\vdash									
Aroshlor 1254	og/l ag/l	0,1		 	···						 		-					
Aroshlor 1242	Jan 1	0,1			···						\vdash		-					
HYDROCARBURES POLYC		ES ARO			L	·		· ·										
Fluoraukėno	9g/			<0,005		<0,005	<0,02	<0,005	<0,005	<0,005	<0,01	<0,01	<0,01	<0,01	<0,01	<0.01	<0,005	<0,005
Benzo (b) Duorantiline	79/]			40,006		<0.005	<0,02	<0,006	<0,005	<0,005	<0.005	<0.005	<0,005	<0,005	<0.005	<0,005	<0,005	<0.005
Henza (k) Nuoraathèna Henza (a) pyrina	2011	CHERTERS CO.		<0,005		<0.008	<0.02	<0,005	<0.005	<0,005	<0.005	<0,005	<0,005	<0,005	<0.005	. <0,005	<0,005	<0,005
Basza (g.h.i) pérylèna	2g/l	0.01		<0.005		<0,005	<0,02 <0,02	<0,006	<0.006	<0,005	<0,005	<0,005	<0,006 <0,005	<0,005	<0.005	<0,005	<0,001	<0,0001
	-K(1)	distribute.		- CDO102	t			.u,uva	*U,VU\$	42,040	-0,000	, ~,~~;	1,000	~0,000	~0,000	-0,000	-0,0000	
Indeno (1, 2,3-od) pyrimu	⊸g/l			<0,085	ı	0,005	<0.02	<0.005	<0.005	<0.005	< 0.005	<0.008	<0.005	<0,005	<0,005	<0,005	<0,0008	<0.0006

Prillèvement: AMA/FGD (Pz nº4)

					-,-				"																														
	Ange			100	200	1	2002 8/8 2/		18/1	(20	2003	112	200	176	2004	1 4445	1011	2	005	5/10		005	120		107	Lagran	27/3		10B 25/9	17/12	- 474	2009	9/12	2510 11/2		2.01 2010		30	
BACTERIOLOGIE	Unitéa N	CHHILL	23/2	l mut	220	33	old 2	it)	18/1	12/3	18/8	4/8	212	17/3	ZWB	םתוו ן	ISA	1#3	20/6	1 2/10	1 1972	1 4(1)	133	1275	Yalq	20(1)	1 2113	1910	zard	10712	G14 3	4/0	3114	1172	ADIE	200	43111	310	aber 1
Colifornies Totaux	n/100 ml	2000	-71		77	·· · · ·	<1	\neg			<1		<1	<1	1 4	<1	<1	<1	- 1	া	(d	- <1	<1	10	80	41	<1	<1	ব	<1	<1	7	-51	xer	nex	пвх			INex
Culifornius Thormolutivents	11/100 ml A	dence	<1		- 4		ণ				<1		- 41		<1	1.		ļ	<1	<1				<10	41		<1	<1	- kl	<1_	<1	্র	41	Inex	<15				<15
Streptocoques Feurus	i√t00attl Al		<1		(1		ব	-			41		<1	1	. 5 D	2		1	<1 0	3	ব	स	<1 0	্ব	<1	ব	<1 0	<1	ব	<1	<1	<1	<1	. <1	<15 0	10	415		₹15 0
Salmonelles	II/5L A	cesnoa	0	_	, a		D		!				L		1	1			0				٠				Įν												
ORGANI QUE																																	=						=
D.B.O5	mp/l OZ		<10		<10		<5	_	_		<5 <30			-	<30	-			<6 <30			ļ	<5 <30	_			<5 <30				<5 <30				430			<5 <30	<6 400
D.CO	ing/I O2		<30		<30) <	30	[:			<90			1	₹30			<u> </u>	<30	ــــــــــــــــــــــــــــــــــــــ	L	-	₹30	_	L .	ــــــــــــــــــــــــــــــــــــــ	Kau		_	_	*30				130	- 50	130	-30]	700
PHYSICO-CHIMIQUE										-																				-				=	=		\equiv		=
pH 4 20°C		22.60	0,9	7,2			3,9 7,		7,1	7,2	7,2	7,3	7,1	7	7,05			7.1	6,95		7	7	17	7	7	6.9	7	8,9	7.1	8,8	7		7,1						
Conductivité	µ9/cm		659	835			149 64	В	678	8/7	851	626	832	870	16.1	694	653	666	688	673	€84	666	680	670	671	604	676 18	695	659	664	710 21.5	692	674	761	72D 22,6			772 25.2	
Chilorures Sulfates	ingl ngl	250	10	-	16,5	, ,	6.9	\rightarrow	-		14,8			<u> </u>	20		+	-	18	+		₩-	16	 	-	-	13			_	17	_	-		18	24			
Caloitm	nyzyl 388	News .	-114			8 12		-	-	_	101.6			 	113.3		+	_	124,5		-		112,5			 	112.3	-			115,8		-		169,4	72	13D	137	127
Megnésium		80	23			3 1					16,6			ì	18,5				16.5				18,95				18,06				16,6			=	17,15			15.3	
Sodium			7.9		Q.8		12	=			9,6				7.1		1		7,1		ļ		7,1	_		<u> </u>	7,2		<u> </u>	_	9				7,9				
Potassium Polentiet Oxydo-Reduction	ingy).	12		20.0	1,2		.3 .63 22		74.7	26,2	6,8 27	21	18.64	1 22 07	21,8	10.6	10.5	10 70	1,6	21,14	17.5	20,18	1,8	21.8	19.7	21.8	18.4	18.73	19.26	20.5	1,6	23,75	20 14	18.5	22,2				
Orthophosphalus	nte/1	2020	4.8	20,0		5 4		.0	41.4	49,4	40,15	-41	10.04	22.07	<0.15		10.0	10,10	10.15		17.0	20,10	e0.15		10,1	21.0	<0.15	10.10	10.20	AV. 9	<0.15	20,10		10,0	<0,15	<0.15	0,05	<0.16	
		SECONDAL.									- 1,1.0				7												-	•								=	=	=	=
SUBSTANCES INDESIRAB		-		_									_	,	1	_			1 00				1 00				31.0		_	_	5.4 T		$\overline{}$		4.1	1 4 3	3,2	2.5	4,5
Nitratus Nitratus	ngd	0.1	0.03		0.72	4	102	-	-	_	1,6		_	_	1,5	-	-	├	2,3	_	-	-	2.8 <0.05	-	 	+	<0.06	_	\vdash		< 0.05		-	-	×0.05			<0.00	
Amnosium	ngt	0.1	<0,05	-	40.0		0.05	\rightarrow			<0.05		-		₹0.05			_	10,05		_		<0,05	+		_	<0,05			_	<0,05	$\overline{}$			40,05	<0.05	40,05	<0.01	<0.01
Carbone Organique Tatale	mp/L 💸	1000	<0,5	0,6	₹0.5		1 1.	5	2,5	23	1.6	1.2	1	1.8	1.2	0,8	1.2	1,5	0,7		0,0	3,8	1	1,5	0,8	0,7	0.7	0.9	1,8	0.7	0,6	0,0	O, B	0,6	0,7	ī		1	0,5
Margonése total		50	21	·	1		<2				<2				8	T			9				4				3				3				- 5	<0,6		5	2
Cuivre	mg/l	1	<0.04			4 <					<0.04				<0,04				40,94				<0,04				<0.04		_		<0,04	L		-	10.04	<0.04		<0,006	
Zint Azeta Kjeldahl	ng/l mg/l	5	<0,01	_	40,0	1 <	1,04				<0.04		-	-	0.24	-		ļ	<0,64	-		_	<0,04	-			*0,04				NU,U4	_	$\overline{}$	-	50,01	40,04	40,04	50,004	×0,00#
Azotu Kjeldoni	1mg/i					-1-								_		_			٠	1			- 1		1			-											
SUBSTANCES TOXIQUES		Ξ,						_							,	,	,				_		,	,	,					,			\equiv	=					_
Cadmium		6	<1		<1		٤1	_			-51				<1				<1				<1	<u> </u>	_	_	Q.5				<0.5 <0.3				49,5 40,3	<0.5 <0.3		<0,5 <0,3	49.5 40.3
Mercure	µg/l	1	41,3		<0,3		0,3	-			<0,3 <5				<0.3	+		-	40,3	 	_	-	<0.3	-		ļ	<0,3				45	-	-	-	<6	45	3	2	2.7
Niekol		60	<4	-	41		4		_	_	€2	< 5		-	<3	₩	 		<5 <2	├	_	_	<6 <2	_	-	ļ	<2		⊢		42	\vdash		-	<2	42	<4	3	3.6
Plomb		50 50	<1 1	-	40.5		<2 <2	-	_		<2		-	_	<2	+			12	_	-	-			 	-	42	_			<2	-	_		<2	<5	<5	<5	<5
Chrome total Stain	μ <u>α</u> /1	30999	<10	-	<0.0		10	-			<0.01		-		<50	+		_	<10	1-			< 0.01	-	 	_	110		-			-			<10	<4	<2	<2	2
AOX	hau as		15	_	12		10				410	_		_	16	+	-		1-30	 	-	_	16	_	 		14	_	_	_	11		-		<50	<50	<50	11	11
	4	KILINA	10	_	1			_						·					-						٠	٠.													
HYDROCARBURESARON																																					=	=	=
Benzene	H2/1		<1		<1		١١.	_			41		-		. <1	ļ			K1	<u> </u>			<1		ـــــ	ļ	<1				<1		-	-		<1	<1	<1	<1
iolaine	1497		<1		<1		41	_			- <1				<1				<1	_	_	_	<1	_	_	_	<1				<1	\vdash	-	-		<1	<1	<1	<1
Xylene (a+m+p)	идл 🥞		<1		<1		K1 '	_1			<1		ļ		<2	-l			<1	1			্ব	_			<1				<1	لنصا		-		<1 <1			
Ethylbanzána	µg/1		<1	_	<1		41	-+			c1	! .	_		<1	-	-	_	<1	 		-	41	-	-		41	-			<1			-		*1	٧١.	<1	· <1
Cumene	jig/1	10000	<1				1				4 1	L	L		<1	ل	L		1 51	١			- 61		1		1 4		L				-	$\overline{}$	-	\vdash	\rightarrow	-	-
POLYCHLOROBIPHENYL	s									_																											\neg		\neg
Amohlor 1260		0.1	<0,020		<0,0	2 40	2.02				<0.02				<0.020	Т	Т	Т	<0,020	Ι -			<0,02	Т	1	Т	<0,02		l							<0,05			
Aroghlor 1254		0.1	0.02		<0.0		102	_			<0.02	i	ì		<0,020				<0,D20	1			<0,02	1	1	f	<0,02			_		\neg	-			<0.05			
Araplitor 1242			<0,020		<0,0		102	7			<0,02				<0,020				<0,020				<0,02				<0,02							ات		<0,05			
,																																			_			=	=
HYDROCARBURES POLY		AROM		E\$	1.000		200				-in mit		·	-	T 000	_	_	_	<0.008	_	_	_	_		,				г —	_		$\overline{}$	_	-				_	
Museum de la Communicación	jugit		<0,005 <0,006	-	<0,00	6 <0.	605	-	\rightarrow		<0,05		<u>. </u>	-	<0.005	-			<0,000			+	+	-	1-		i –				\vdash				-	\vdash	\rightarrow	-	-
Henzo (b) fluoranthèno Houzo (k) fluoranthène	Jug/L	1000	<0,005	-	<0.00		£05	-+			<0.05	-	 	├	40,000	+	 	-	<0,005	+			+	_	! 	\vdash	 					\vdash			-	-	\rightarrow		_
Benzo (n) pyrána		0.01	<0.006		<0.00		.005	+			<0.05	-		-	<0.005	-	-		40,005	+	-	_	<0.0D2	_	1		<0.002	_		_	<0,002	$\overline{}$	-		< D.002	<0,002	<0.002	<0.002	<0.002
Benzo (g.h,i) përylëne	ug/t	35333	40,020		40,02		520	\rightarrow			<0,02				<0.020	1	 	 	<0.020	+	_	-	3,401		 		1.,			_		$\overline{}$	-	_					
Indino (1,2,3-cd) pyréne	np/l		<0.020	-	<0.02		920	-	-		<0,02				40.020		 	_	<0,605	 		— —				-	1	_									\neg	\neg	_
Somme des H.P.A (6)		0,2	<0,08		-5,02		1,03	\dashv			<0.08			 	n.d	+	-	$\overline{}$	n.d			1 -	<0.06		1	_	<0,08				<0,06				<0.03	<0.03	<0,03	<0.03	<0,03
		-				_					-100		-		1									_	•			٠						-					

n d.≃ pon-dåtech

Prelévement: AMAVCO (Pz.nº4)	Ÿ	ļ,	ł			}	ļ	}				ļ	·	ļ		.	l	ļ
	An	née:	2	014	2	L	2	018	2	017	2	118	i I	2019	2) 02 0	21	<u>.</u> 921
		NORME	27/6	30/12	19/6	22/12	8/3	14/9	29/3	28/9	29/3	B/11	7/3	30/9	20/5	1/10	17/2	30/9
BACTERIOLOGIE						E		1,					1		2010			30/0
Collfornes Totalis	n/100 ml	8331 1838 8331 1838		-11	1	<1	<30	<1	<1	<1	<1	10	<1	Ilitalbie	*1	lilisible	-1	filsible
Colifornes Thermotolerants	n/100 ml	Absence		-1	41	<1	<30	<1	41	<1	<1	41	41	Illialble	41	Illable	4	Hisible
Streptoconues Férmux	nriot mi			<1	<1	<1	<3Q	41		<1	<1	1	36	<1		3	41	51
Salen ouelles	11/5 [Absence		abs	abe	abs	abs	abs	abs	abs	abs	abs	abe	non détecté	non détenté	non dátecté	non délecté	non détec
ORGANIQUE	-	1	<u> </u>	1		 			<u>:</u>	-	 						-	
0.B.05	mg/1 O2	1870 B	<1	<1	<1	<1	<3	-41	<1	<1	<1	<1	<1	<1	41	<1	ব	<1
0.0,0	ntg/1 O2		<30	<≫	<30	<30	⊀15	-30	<30	<30	<30	<30] .	<5	45	<5	<\$	<5
		i		-			-		i		i		!			1	i	i -
PHYSICO CHIMIQUE	1		ŧ .								1			_				
Há 20°C	-		7.1	7	7,2	7.1	7.1	7	7.2	7	7	6,9	7.1	7,1	6,9	6,9	7	7,1
Conductivité	ess/cm		849	725	729	732	1442	745	765	721	798	748	735	755	818	751	877	743
Chiomros	mg/l	200	30	21,1	21,9	22,1	120	20,8	23	20.5	23.9	21	22,6	21,8	20.6	20.8	24.6	19,8
Bulfator	mg/1	250	44	9	26,2	19,7	92	25,8	39,4	28,4	47	27,9	34	25,4	30,4	33.8	89,9	32.2
Calcium.	mg/l		163,17	134,79	132,18	137,11	180	140.38	135,59	130,79	144,8	133.58	135,61	119	110	120	150	130 -
Magnésittan	mg/l	60	15,75	16,39	15,76	16,75	7,6	18,01	16,58	17,89	19.85	17.3	18.87	15,3	18	16	12	16
Sodium	IDE/I	160	10,97	9,33	8,86	9,4	74	9,38	9,23	8,9	10,81	9,36	9,83	8,35	10	7,9	12	8.5
Potiesium	mg/I	12	1,84	1,84	1,88	1,78	23	1,92	1,91	1,84	2.1	1,88	1.81	1,47	1.7	1,5	2.4	1,7
otential Oxydo-Reduction	Rh		31,13	28,38	28,09	30,48	23,47	32,31	29.02	29,3	29,25	29,8	30,54	30.10	32,16	31,50	30,54	32,26
Onthophosphetes	mg/l		<0,15	0,32	40,15	< 0.15		-0.16	<0,16	<0,16	<0,15	<0,18	<0,15	<0.19	<0.15	<0.15	<0.15	<0.15
•	1			1														
SUBSTANCES INDESIRAB	L,ES		1						i	Ή								
filmtes	mg/l	50	4,8	10,4	4.7	10,3	23	4,9	8,41	4,15	5,27	6,35	5,95	11,5	7.09	3,61	6.12	6.81
Vitrites	nue/	0.1	0,005	<0.08	40,01	<0.01	<0.05	0.01	0.01	<0.01	0.01	0.03	0.01	<0.01	0.02	0.01	0.03	0.03
Ammandium.	mg/l		<0.09	<0.09	<0.05	<0.06	<0,1	<0,05	<0.05	<0,05	<0,05	-0.05	<0,05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbona Organique Totale	me/L.		1,5	1	0,59	1,2	4,5	0.98	1	0.89	1.1	1	1	0.79	0.76	0.61		0.79
(m) grusėso Lotal	199/1	5D	2	13.7	3.78	13.	<5	5,91	3.09	2.67	11.4	1.8	t,665	14,1	3,5	2,2	2.4	3.4
uivre	Jig/L	1	0,002	0,00058	<0,0005	<0,005	6,00000	0.00167	<0.0003	0,00057	0.00076	0.00059		0,00083	0,0006	0,0004	0,0008	0,0004
Zina	mg/L	- 5	0,008	0,0054	<0,005	<0,06	<0,05	<0.005	<0.005	<0,005	0.0061	0.0033	0.0018	0.0039	0,0058	- 0.0026	0.0024	0.0023
Azote Njeldehl	mg/l	1											1					
									_									
UBSTANCES TOXIQUES	1					Ĺ												
Distinctions.	em/1	5	<1	<d,2< td=""><td><0.2</td><td><0,2</td><td><1,6</td><td><0,2</td><td>40,2</td><td><0.2</td><td><0,01</td><td><0.01</td><td><0,01</td><td><0.01</td><td><0,01</td><td><0,01</td><td><0.01</td><td><0.01</td></d,2<>	<0.2	<0,2	<1,6	<0,2	40,2	<0.2	<0,01	<0.01	<0,01	<0.01	<0,01	<0,01	<0.01	<0.01
Vierouse	-rg/1	1	<0.05	<0.06	<0.05	<0,06	-0.t	<0.016	<0,015	<0,016	⊲0.01	<0,01	<0,01	<0.01	<0,01	<0.01	-0,01	<0,01
Vielcol	etg/]	50	ψ	2,4	~2	2,5	<10	2,6	2,3	2,2	2,3	2,1	1.7	3	2	1,8	1,6	2
Plonsh	4Qg/}	6	Ŷ		<0,5	<0.5	<10	<0,6	<0,6	<0,5	0,6	<0,1	. 40.1	0.6	<0,1	<0,1	<0,1	≪0,1
hrome total	×3(/)	50	<5	<0,5	<0,5	< 0.5	<5	- 0,5	<0.5	≪0,5	0,13	0,13	<0,03	0.11	0,35	<0.05	<0.05	0, 16
Etedin	e2c/1		<10	¥	4	<1	<10	<1	<1	<1.	<0,2	<0,2	40.2	<0.2	<0.2	<0,2	<0.2	<0,2
XOX	≪g/I		28	23	12	11	37	<10	.<10	32	14	25	16	22	23	28	28	59
	i			1						L.				,				
YDROCARBURES AROM	ATIQUES	\$											· · · · ·					
Scarreno .	∞y/t	Carle Land	40.2	<0.2	<0,2	<0,2	<0,5	≺0,2	90,2	<0,2	<0,2	<0,2	40,2	<0,2	<0,2	<0.2	<0.2	<0,2
'oluëne	∝g/l		40,5	<0,6	<0,5	<0,5	<0,5	40,5	<0.5	<0,5	<0,5	<0,5	<0,6	<0,6	<0,6	<0,5	<0,5	<0,1
(ylána (a+m+p)	αg/l		€,2	<0,2	<0,2	<0,2	$\overline{}$							1				
thylbenzina	org/1		<0.2	<0,2	<0,2	<0,2	<0,5	40.2	<0.2	<0,2	<0.2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Turnene	org/l							_										
OLYCHLOROBIPHENYL	B			Ĺ.				}							•			
Special or 1260	reg/l	0.1										_						
molitor 1254	atg/l	0,1	_								_							
rouhlor 1242	ap/1	0,1																
VDDOCADDIDER CO. V.	VOL ICT	CE ADO	HATIC	inte									-					
YDROCARBURES FOLYO		ES ARO																
Inompthone	≪ p /1		<0,005	<0.005	<0,005	<0,005	<0,02	<0,005	<0,005	<0,006	<0.01	<0.01	<0,01	<0,01	<0,01	<0.01	<0,006	<0,005
enzo (b) fluoratibêno	eq/1		<0,005	<0,005	<0,005	<0,005	40,02	40,005	<0.006	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005	<0,005	<0,006	<0,005
	org/1	300000000	<0,005	<0,005	<0,005	<0,005	<0,02	<0.005	<0.005	<0,005	e0,005	<0,005	<0,005	<0,005	<0.005	<0,005	<0.006	<0,005
enzo (k) fluomathène																		
cozo (n) pyrêna	13g/l	0.01	<0.005	<0,035	<0,005	<0,005	<0,02	<0,006	<0,005	<0,005	<0,005	40,005	<0.005	<0,005	<0,005	<0.005	<0,001	<0,001
		0.01	<0.005 <0.005 <0.005	<0,005 <0,005 <0,005	<0,005 <0,005 <0.005	<0,005 <0,005 <0,005	<0,02 <0,02 <0,02	<0,005 <0,005 <0,005	<0,005 <0,005 <0,005	<0,005 <0,005 <0,005	<0,005 <0,005 <0,005	<0,005 <0,006 <0,006	<0,005 <0,005 <0,006	<0,005 <0,005 <0,005	<0,005 <0,005 <0,005	<0.005 <0.005 <0.005	<0,001 <0,0006 <0,0006	<0,001 <0,000 <0,000

Prélèvement: AMZE (Pz n°5)

March Marc
Section Column
Column Found 100 a) Section Column Found
Column Department Column
September Sept
Secondaries 192 Capanal 0 0 0 0 0 0 0 0 0 0
\$\frac{1}{1}\$\fr
Part Part
PACTOR P
PRY 1975 CHIMING/E 12
Fig. 2016 Fig. 2017 Fig.
Considering 19/00
Company Comp
Bulletina Grid 250 11 4 13 19 22 172 172 173 19 17 17 17 17 17 17 17
Definition March
Margination April 50 12 145 127 124 14 14 14 14 14 14 1
Security Security
Processing Copyright September 18
Confidence Con
Substitution Subs
Note 10 12 15 15 15 15 15 15 15
Minist
Service Serv
Christon Equations From 1912 1913 1914 1915 1915 1915 1915 1915 1915 1915
Marganessared Marganessare
Cutting may 1 0.04 0.04 0.05 0
Sec. Sec.
Table Tabl
Columba ppg/ 5 c1 c4 c1 c1 c1 c1 c1 c1
Columba ppg/ 5 c1 c4 c1 c1 c1 c1 c1 c1
Hagano and 1 43, 43, 43, 43, 43, 43, 43, 43, 43, 43,
Plends 18pt 50 ct ct c2
Granuctorial 194 50 40.5 40.6 42 42 42 43 43 44 45 45 45
Bisin 196 410 40,61 41D 40,61 450 410 40,01 410 410 41 41 42 42
AOX
HYDROGARBURES ARCM ATIQUES
Sensino
Tokene
Bly विकास कि कि विकास कि कि कि कि कि कि कि कि कि कि कि कि कि
Councid pg4 41 41 41 41 41 41 41
POLYOHLONG B PHENYLS
Transaction of the second of t
Archiber 1254
Archiber 1254
Azorditer1254 Pg\$ 0,1 0,000
Aprofile
Accolder 154 pg 0, 1 0, 000 0,
Aprofeller 154
Accoldate 154
Aproximative March

Prélèvement: AMZE	(Pz n°	5)	ļ					ļ				1					
	An	née:	2014	20)15	2	016	21	017	j 21	01B.	<u> </u> 2	1019	20	120	ä	<u>i</u> 021
***************************************	Unités	NORME	27/8	19/6	22/12	a/3	14/9	29/3	26/8	29/3	6/11	7/3	30/9	29/5	1/10	17/2	30/9
BACTERIOLOGIE																	
Coliformes Totaus	n/100 ml			-	<1	<0	۲۱	<1	iksble	<1	<1	* 1	eldfelli	_ IIIIs ible _	Misible .	Tsible	<1
Colifornes Thomotoléents	n/100 ml	Absence		4	<1	<30	<1	<1	ilősible	ধ	<1	<1	illaible	litis ibla	illsible	litsible	<1
Streptocoques Fécoux	n/100 ml	Absence		4	13	<30	28	<1	8	*1	<1	16	6	٠	29	<1	- 6
Salm onelles	n/Si	Absence		abs	abs	abs	abs	abs	abs	abs	ape	abs	non délacté	élcelèb non	non déteaté	non détecté	non dålagtá
ORGANIQUE		NAME OF TAXABLE PARTY.					Ì.	İ	ļ	Ĺ							
D.B.O.5	mg/I O2		4	2,2	<1	<3	<1	<1	্ব	<1	<1	<1	<1			<1	<1
D.C.O	mg/ID2		<10	<30	<3/0	<15	<30	<30	<30	<30	430	45	ধ	45	<5	⋖	<5
PHYSICO-CHIMIQUE			-		-	-		-	_	<u> </u>	<u> </u>		-			<u> </u>	—
	-	698397853333			-												
nH à 20°C			7,3	7.2	7	7.3	8,8	7,2	7.3	8,8	6,8	7,2	7,3	6,9	- 7,1	7,2	6.9
Conductivité	-/3/cm		781	757	709	700	766	703	657	759	740	652	649	777	753	702	742
Chloruros	mg/l	200	17.4	18.7	17	15	15.7	15.2	15	15,5	16,7	16,1	15,3	17.8	18	19,8	16,2
Sulfates	mg/l	250	7	12,1	3,2	110	10.5	10,5	16,4	16,7	9,6	9,5	17,6	10,7	18	10,1	11,1
Caloium	mg/l	#2/6#25	147,26	118,02	138,81		151,46	126.88	124,87	148,9	138,66	118,04		130	130	160	
Magnésium	mg/l	50	15,79	16,67	14.48	13	16,16	15,43	15,59	15,67	18,01	15,42	14,3	15	18	15	16
Sodium	ntg/l	160	9,08	8.5	8,99	7,4	8.81	7,89	8.34	9.01	8,88	8,27	7,42	9.6	7,5	24	7,6
Potresium Potresium	ng/	12	1,09	1,16	1,09	1,1	1,25	1,22	1,21	1,26	1,24	1,11	1,13	1,1	0,98	4	1,1
Potential Oxydo-Reduction	Rh	20/20/20/20	30,36	27,92	30	26,36	32,19	28,99	29,89	28,74	29,33	30,48	30,7	31,88	32,19	30,75	32,03
Orthophosphates	Dag/I		<0.16	<0.15	<0,15	<u> </u>	<0,15	<d,15< td=""><td><0,15</td><td><0,15</td><td><0,15</td><td><0.15</td><td>0,36</td><td><0.15</td><td><0,15</td><td><0,15</td><td>0,2</td></d,15<>	<0,15	<0,15	<0,15	<0.15	0,36	<0.15	<0,15	<0,15	0,2
SUBSTANCES INDESIRAE					-												
Nitrates	ing/l	50	35,3	16,1	24,9	23	17,5	18	13,5	14	19,5	17.3	12,5	24.0	13.1	18,6	18.2
Nitrites	mg/l	0,1	0,22	D,14	<0,01	<0,05	0,12	0,12	0,08	0,06	0.11	0,1	0,05	0, 13	0.07	0,12	0.12
Ammonium	ıngrl		<0.05	<0.05	<0,05	<0.1	<0,05	<0,06	<0,05	<0.05	<0.05	<0.05	<0,05	0,11	<0,05	< 0.05	<0,05
Carbone Organique Totale	mg/l		0,67	0.24	0.01	<0,5	0,78	0,56	0.53	0,72	0,71	0,55	0,61	0,58	0,43	0,71	0,49
Mangandso total	vg/I	50	41	10,9	8,82	<5	16,7	22.8	8,01	9.08	9,48	4,66	30.1	10	2,5	0,2	3
Cuivio	mg/t	. 1	<0.001	<0.0005	<0.005	<0.005	0,0027	0,001	0.0006	0,0006	0,0009	<0,00015	0,00297	8000,0	0.0002	0,0000	0.0002
Zîne Azoto Kjeldahl	mg/i mg/l	5	0.002	<0,005	<0.005	<0,03	800,0	<0,005	<0,008	0,0047	0.0036	0,0021	0.0051	0,0074	0,033	0,0028	0.0021
SUBSTANCES TOXIQUES											<u> </u>						
Cadminut	ng[/	5	-1	<0,2	40,2	<1,5	0,21	<0,2	0,2	<0,01	49,01	<0,01	40,01	<0,01	<0,01	<0,01	<0.01
Mercura	792/	_1_	<0,05	<0,05	<0,05	<0,1	<0,015	<0,016	<0,015	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,02
Nickel	og/l	50	<5	2,6	<2	<10	3,8 0.74	0.92	-2 -0,5	2,9	2,6	1,8	3,4	1,9	2,8	3	2,8
Plemb Climme total	ogil	50 50	<5 <6	<0,5 <0.5	<0,5 <0.5	<0 <6	0.66	40.5	<0.5	0,5	0,5	0,3	2,1	0,5	0,1 <0.05	e0,1	<0,1 0.22
	ogil	300	410	<0.0 <1	<1		¥1	40,5 41	<1		0.27	<0.05		0,48			
Utain	og/l					<10				<0,2	<0,2	<0,2	-0,2	40,2	<0,2	<0,2	<0,2
AOX	og/		28	17	< 0	<20	11	<(0	<10	13	24	15	34	22	34	15	10
HYDROCARBURES AROM.	ATIQUES			_			<u> </u>	 	 		 	-				<u> </u>	
Benzino	-r1/040⊞3		<0,2	<0.2	<0,2	<0.5	<0.2	<0,2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0,2	<0.2
Toluène	4g/]		<0,5	<0.5	<0,5	40,5	40,5	<0,5	40.5	<0,5	40.5	40.5	<0.5	<0.B	<0.5	<0,5	<0.1
Xyline (o+m+n)	V24/1		<0,2	<0,2	<0.2	-0,5	-010			-0,0		70,5	-0.0	10,0	- 40,0	-0,0	
Ethylbenzine	vg/1		₹0.2	<0.2	<0.2	40.5	⊲0.2	50.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cumono	v _k /1				-0.2	-0,0	-40,2	-0.2	10,2	10,2	~9,2	-0,2	-0,2	-0,2		10,2	-Q, <u>r</u>
POLYCHLOROSIPHENYL:																	
Anushler 1260	n/I	0.1									-	\vdash					
Ansohlor 1254	46/1	0,1															
Amabler 1242	2g/i	0,1						·		_							
HYDROCARBURES POLYC	Vel tet	ES ARO	WATER	IES							\vdash		İ				
ri riorio carbones, coltro		STATE OF THE PARTY	<0.005	<0.005	<0.005	<0.02	<0.005	<0.005	×0.005	< 0.01	<0.01	<0.01	<0.01	≪0.01	<0.01	<0.005	<0.005
Benzo (b) fluorantirène	og/L		<0.005			<0.02				<0.005	<0.005	<0,005	40,005	<0.005	<0.005	<0,005	<0,005
	ogil		<0.005	<0.005	<0.005	<0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0,005	<0.005 <0.005	<0.005	<0.005 <0.005	<0,005 <0.005	<0,005
Benze (k) fluoranthène	ag/L	0.01		<0,005		<0.02		<0.005									
Benzo (a) pyréno	ogil .	U,UI	<0.005		<0,005		<0,005		<0.005	<0,005	<0,005	<0,005	<0,005	<0.005	<0,005	<0,001	<0.001
Benzo (g.h.i) pávláno	19/I		<0.005 <0.005	<0,005	<0,005	<0,02	<0,005	<0.005 <0.005	<0.005	40,005	<0,005	<0,005	<0,005 <0.005	<0,005	<0,005 <0.005	<0,0006 <0,0008	<0,0008
Indéno (1.2.3-od) pyrique	78/	SHATHSHITE.				<0,02	10,005	10,005	90,005	-0,005	40,005	<u,005< td=""><td><0,005</td><td><0,005</td><td><0,005</td><td><0.0008</td><td>-0,000</td></u,005<>	<0,005	<0,005	<0,005	<0.0008	-0,000
Somme des H.P.A (8)	e#/	0.2	<0.005	<0,005	<0,005							1					<u> </u>

Prélèvement: Pz n° 8	· · · · · · · · · · · · · · · · · · ·		·		Ţ	÷	I							ļ		ļ	Ţ	}
	47	née:	1	2014	 ,	015	1	016		117	1 2	018	2	019	1 20	020	1	021
		NORME	27/6	30/12	19/6	22/12	8/3	14/9	29/3	28/9	29/3	6/11	7/3	30/9	29/5	1/10	17/2	30/9
BACTERIOLOGIE	:	-	1		1				20.0	20.0			,,,,					Dora
Collformes Totaux	n/100 ml	3000000		1	2	1	<30	. 4	<1	<1	<1	30	<1	<1	Illisible	<1	41	ব
Collformes Thornatolémets	a/100 ml	Absence	Ì	<1	<1	<1	<30	<1	₹1	-11	<1	<1	<1	<1	aldreilli	<1	41	<1
Streptocorpus Páuxix	a/100 ml	Absence		<1	-1	-1	<30	<1	<1	<1	<1	1	<1	56	<1	17	51	17
Salmossellos	n/5	Absence		alıs	abs	abs	abs	abs	abs	aba	Bbs	abs	abe	non délecté	non délecté	non détecté		non détecté
ORGANIQUE	<u> </u>	1	!	 	1				 	:	1	1	 		Ì		 	
D.B.05	mg/l O2	\$37.10000	4	1	1,2	<1 '	<3	<1	41	<1 :	<1	<1	<1	<1	<1	<1	<1	<1
D.C.O	mg/l O2		-30	<30	<30	<30	<15	<30	<30	<30	<30	<30	9	<6	<6	<5	<5	<5
		!	1	1	1	1					į			1			ļ	
PHYSICO-CHIMIQUE	i	1	1		ĺ				i i		İ			1	i	1		
pH à 20°C	Τ'-		6,9	6.9	7,3	7,2	7.2	7	7	B,9	6,9	7	6,8	7	6,0	6,9	7	9,9
Conductivité	-4\$/¢m		995	1130	897	776	980	942	1100	998	1080	900	1010	909	1030	1020	1070	1040
Chloruros	mg/1	200	60,1	82,7	41,8	26,7	41	48,5	61.2	52,7	48,1	37.8	40,1		60.4	58,5	47,7	54,3
Sulfator	mg/1	250	29	32	24,3	11.6	29	28,7	52.7	41,2	81,4	33,2	70,5	T	64.4	46.6	78.8	52.8
Caloium	mg/I	7	179,08	189,67	184,15	148,44	140	176,57	187.07	180,09	194.4	185,02	195,63		180	160	170	170
Magnesium	mg/I	60	12	12,29	11,89	12,31	11	12,6	11,96	11,81	11.19	11,87	11,87		12	11	11	11
Sodium	ms/t	150	29	46.11	20.56	15,17	21	27.73	38,18	29.7	30.45	20.81	24,44	1	32	31	30	29
Potosalum	mg/l	12	4.4	5,95	2,9	1,97	2,9		7	5,19	8,04	3,21	3,54		4	4,5	5,4	5,5
Potential Oxydo-Raduction	Rh		30,53	28.59	28,02	30,33	25.7	32.83	28.60	26.96	20.1	29.71	29.97	30.09	31.0	31,64	30,28	31,94
Orthophosphates	mg/l		<0.15	<0,16	40,15	<0,15		40,15	<0,15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0,15	<0,15	<0,16
	1				11-						1 111		51.0				3	
SUBSTANCES INDESIRAB	LES										i –	1					}	j
Nitratea	mg/L	5D	18	18,3	17.5	16,8	10	18.5	20,1	19,5	24.1	20	28	22.6	21.9	23.2	20,5	25,6
Nitrites	ing/l	0,1	0.05	<0.05	<0.01	<0,01	<0,06	<0,01	<0.01	<0,01	<0,01	<0,01	<0,01	<0.01	40,01	40.01	<0.01	<0.01
Ammonlum	mg/l		< 0.05	<0,05	<0.05	<0.05	0,1	40,05	<0.05	40,05	<0.05	<0.05	0.08	<0.05	40.05	<0.05	<0.05	10.05
Carbona Oraminue Totato	mg/1		1.9	2.6	1.1	1.3	1.2	1.5	<0.2	1,7	2,5	1,4	2.2	1,2	1,8	1;4	2,5	1,7
Manunnèse total	re/1	50	41	3,13	1,71	4,43	< 5	40,5	<0.5	50,5	<0,05	5,54	<0,05	0,28	9,05	0,12	0,09	0,24
Citivre	mg/l	1	<0.001	0,00098	0,00067	0.00060	<0,005	0.00003	0.00078	0.00072	0.00130	0.03120	0,00117	0.00093	0.00140	0,00110	0.00170	0.00090
Zino	mg/l	5	0,027	0,0073	40,005	<0.005	<0.005	<0.005	10,005	<0,006	0.00210	0.07140	0.00280	0.00560	0,00140	0,00000	0,00230	B,00270
Azote Kjeldshi	mg/1	1			,	,,,,,,		- 1,111	7,107		0,502.10	4/4/1/10	U,UULUU	0,0000		0,00000	9,002.00	5,00010
SUBSTANCES TOXIQUES	1	<u> </u>			——	1	ļ	1			<u> </u>			 			1	├
Cadnitan	agit	s	<1	<0.0002	. <0,2	<0,2	<1,5	40.0	40,2	40.0	<0.01	0.24	-0.04	-0.04	-0.04	.0.04	-0.54	
Mercura	rog/L	1-3-	<0,05	<0.0002	<0.05	<0.06	<0.1	<0.2 <0.016	0,029	<0,2 <0,015	0.01	0,31 <0.01	<0.01	<0,01 <0.01	<0,01 <0.01	<0,01 <0.01	<0.01	0,01
Nickel	rigit.	50	<5	6,2	4	2.8	<10	4.2	5,1	4.4	4.1	5,8	3,8		4,4	4,3	4,5	4,2
Plonb		50		0,2	±0,05	0,53	<10	4,2 40,5	<0,6					3,5				
Chrome total	vejl_	50	<5		<0.5	<0.5	<5		<0,5	<0,5	<0,1	2,9	0,1	<0,1	<0.1	<0,1	40,1	40,1
Diala	og/L	200	< D	- 41		40.5	<10	<0,5		<0,5	0,11	1,76	*D,05	D,21	0,3	0,25	0.14	0,23
AOX	ang/l		78	<1 103	19	19	10	21	- 41	- cl	40,2	23	> <0,2	<0,2	<0,2	<0.2	<0,2	<0.2
AUX .	/yg/	RESERVED TO SERVED SERV	- 10	103	19	19	10	21	18	<10	25	23	29	25	14	16	21	25
HYDROCARBURES AROM	ATIONS				i		·	i —			1	i					├ ──	
Begging	×g/1	200000000000000000000000000000000000000	<0.2	<0,2	<0,2	<0,2	<0,5	<0,2	<0.2	<0.2	-0.0	40.0		40.2	40.0	40.0	40.7	<0,2
							<0.5	40,2 40,5	<0.2 <0.5	<0.2 <0.5	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2 +0.5	<0,2	
Toluena Xyléne (o+m+p)	7g/1 √g/1		<0,5 <0,2	<0,5	<0,5 <0,2	<0,5	<u,5< td=""><td>4U,0</td><td>40,5</td><td>40.0</td><td><0,5</td><td>-0,6</td><td>. 40,6</td><td><0,6</td><td><0,5</td><td><0,5</td><td><0,5</td><td><0.1</td></u,5<>	4U,0	40,5	40.0	<0,5	-0,6	. 40,6	<0,6	<0,5	<0,5	<0,5	<0.1
Aylene (0+m+p) Ethylbenzène	×g/1	200	40.2	<0,2 <0,2	<0,2 <0.2	40,2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0,2	40.0	<0.2	<0,2
Cuncea			-0,4	~U, Z	70,2	~0,2	-0.5		-0,2	~0,2	NO,2	~0,2	NO,2	NU,2	NU,Z	<0,2	*0,2	NU.2
Control	αg/	CHOLDINGS .	· · · · · ·			-					-						!	
POLYCHLOROBIPHENYL	Š		-		i	i		i						i				
Arothior 1260	og/L	0.1															-	i
Arochior 1254	ज्यूत ज्यूत	0,1																
Arodilor 1242	og/L	0.1			 								-				l 	
successed 1576	- veri	0,1	-									 					!	
HYDROCARBURES POLYC	YOU IOU	ES ARO	MATIC	IFS	i	i —						i –					\vdash	$\overline{}$
Fluorenthèno	wg/L	\$5000 K600K	<0.005	<0.005	<0.005	<0,005	<0,02	<0,005	<0,005	<0.005	<0.01	<0.01	40.01	<0.01	<0,01	<0.01	<0.005	<0.005
Basza (b) fivorauthéne	en/l		<0.005	<0,005	<0.005	<0.005	<0.02	<0.005	<0.005	<0,005	40,01 40,005							
			<0.005	<0,005 <0,005	<0,005	40,005						<0,008	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
Benzo (k) fluoranthène	7(g/]	200000000000000000000000000000000000000		<0,005 <0,005	<0,005 <0,005		<0,02 ≠0,02	<0,005	<0,005	<0,005	<0,005	<0,006	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
Benzo (a) pyréno	yg/]	0,01	<0,005		<0.005	<0.005	<0.02	<0.008	<0,005	<0,006	<0,006	<0.006	<0,005	<0,005	<0,005	*0,005	<0,001	<0,001
Benzo (g.h,i) pérylénu	arg/]		<0,006	<0,005		<0,005	40.02	<0,003	<0,005	<0,005	<0,006	<0.006	<0,005	<0,005	<0,005	<0,005	8000,0>	<0,0008
Indéno (1,2,3-ad) pyrène	79/1	2001111200	40,005	<0,005	<0,005	<0,005	<0,02	<0,005	<0,005	<0,005	<0,005	<0.009	<0,005	<0,005	<0,005	<0,005	<0,0006	<0,0006
Somme des H.P.A (6)	-rg/1	0.2	<0.005	40,005	<0,005	<0,005												

Prélévement: Pz nº 7		T	T	T	1	:	T		······································	T	1	1 .	ĭ	;	ĭ	· · · · · · · · · · · · · · · · · · ·	
	T	T		1	1		1		1	1]				Ī	:	
	An	nêe:	2014	2	015	 	016	2	017	2	118	2	019	2	20		021 .
		NORME		19/6	22/12	8/3	14/9	29/3	28/9	29/3	B/11	7/3	30/9	29/5	1/10	17/2	30/9
BACTERIOLOGIE		1	1														
Collibrates Totaux	n/100 ml		4	<1	<1	<30	<1	<1	<1	<1	3	<1	illaible	<1	ব	<1	<1
Colifornes Thermotolémets	p/100 ml		41 -	<1	<1	· <30	<1	<1	41	<1	*1	<1	filistble	41	ধ	<1	41
Streptocoques Pécaux	n/100 ml		<1	<1	<1	<30	<1	ব	<1	<1	41	<1	15	41	4	<1	<1
Salmonelles	n/5 l	Absence	gbe	abe	abs	abs	abs	Rbs	abs	abs	ebs	abs	non détecté	non dáleató	étostéb non	non détecté	non dálacté
	1	ļ			ì		 		1	1			<u> </u>	<u> </u>	ļ		
ORGANIQUE	ļ	-	<u></u>		ļ.,		L										
D.B,O5			. 1	1,8	<1	43	<1	ব	41	<1	<1	<1	<1	<1	<1	<1	<1
D.C.O	mg/L D2		<30	<30	<30	<15	<30	<30	<30	<30	<30	< 5	<5	₹6	< 5	4	<5
DUVALGA ALLIMATE	-			<u> </u>	-	-	!			<u> </u>				-		·	ļ
PHYSICO-CHIMIQUE	-	1	7					7	7								
				7.1	6,9	7,2	7			8,8		6.8	7	6.9	6,9	6,9	7
Conductivité	ord/tyn	THE PARTY NAMED IN	919	808	. 968	910 28	758 21.5	860	767	1230	812	949	758	890	835	1040	803
Chloruses	mg/1	200	46,6	28.3	45,2 22,7		21,5 8.4	34.5	28,3	71,4	27,1	39,8	22,4	37,4 25,8	32,7	48,9	23,8
Sulfritos	: mg/1	250	13	14,1		58		26,5	13,9	98.4	14,3	39,6	8,5		16,8	49,3	12,5
Caloium	mg/l	60	170,87 7,5	158,47 7,76	197,47	140	154,78	181,58 8,26	147,02	242,9 9,87	159,48	184,51	128 7,9	150 8,7	150 a	160	150 8,2
Magnésium	mg/l	150	25,7	12.59	22,98	10	8,81	17.14	3,68		8.7	7,93	9.27		13	6.6 31	10
Sodium Polassium	mg/l	12	4,83	1,91	3,69	1,9	1,27	3,11	13.63	49,62 11,4	12,59	21.4 3,97	1.09	3,1	1,6	8,2	1,4
Potential Oxydo-Réduction	Rh	1Z	28,49	27.75	30.11	24.04	33	28.52	29.48	28,82	29,71	29.67		31.74		30,29	31,9
Orthophosplates	musi		<0.15	40,15	<0,15	24,04	<0,15	<0,15	40,15	0,2	<0,16	<0.15	30,2 <0,15	<0.15	31,73 <0,15	<0,15	<0,16
Controphicapients	mg/1	100000000000000000000000000000000000000	¥ 40.15	-0,10	10,15		-0,10	*0,15	40.49		40,10	40,10	40,15	0,10	=0,10	40,10	
SUBSTANCES INDESTRA	11 22	} -		i -	 -	†	i	·	 	i	i	i	 	i 		i	
Nitrates	mg/I	50	27	25,9	23,2	14	25,4	25,3	28,3	35,4	25.8	20,3	26,2	26,8	27.2	25.6	27,9
Nitrites	mg/t	0.1	40.05	<0.01	40,01	<0,05	<0,01	0.01	<0.01	<0.01	<0,01	<0,01	<0,01	<0,01	<0.01	<0.01	<0.01
Ammonium -	mg/i		<0.08	<0.05	<0.05	0,1	40,05	<0.05	<0.05	<0,06	<0,05	40,05	<0.05	<0.06	<0,05	<0.05	<0.05
Curbone Organique Totale	.mg/l		1,9	0,54	1.8	1,2	0.72	-0,2	0,84	3,4	86.0	1,7	0,49	1	0,68	2	0,82
Minganèse total	mp/l	50	2.37	<0.6	4,26	<5	1,33	<0,5	<0,6	0.08	<0,05	<0.05	0.13	<0.05	<0.05	<0,05	0,64
Cuivre	mg/L	- 1	0.00091	0.00056	0.00296	<0,005	<0.00141	0.00076	0.00065	0.00168	0.00071	0.00082	0.00081	0.0009	0.0008	0.0012	0.0007
Zine	ma/l	5	0,0006	<5	₹5	<0,05	<0,005	<0,005	<0.005	0,00200	0,00180	0,00120	0,00200	0,0041	0,0070	0,0023	0,0180
Azoto Kieldahl	mg/L	1]	1							-					-
	1			1	ł .		1		1	ļ		1	1		1	, .	1
SUBSTANCES TOXIQUES	i		L														
Codmittee	org/i	. 5	<0,0002	<0,0002	<0,0002	<1,5	<0,2	<0.2	<0,2	<0,01	<0.01	<0.01	⇔0, 01	<0.01	<0.01	<0.01	≠0,01
Mercuro	cy/l	1	<0,05	<0,06	<0.05	<0.1	<0.015	0,017	<0.015	0,01	<0,01	0,04	<0.01	<0.01	<0,01	<0,01	<0.01
Nickel -	30g/I	50	2,8	<2	2,9	<10	<2	2,2	-2	4,2	1,5	2,1	1.5	1.0	1,8	2,5	5,3
Plomb	7g/!	50	<u> </u>	<0,5	<0,5	<10	<0,5	-0,5	<0,5	0,3	<0,1	*D, 1	<0,1	<0,1	40√1	+0,1	₹0,1
Chrome total	σg/l	50	0.74	<0,5	<0,5	<5	<0,6	40,5	<0,5	0,29	0,14	<0.06	0,22	0,62	2	0,79	0,45
Etaln	79/1		<1	(- 41	<10	<1	<u> </u>	<1	<0,2	<0,2	<0.2	<0,2	<0,2	<0,2	<0,2	1.7
AOX	og/!		27	14	28	<10	<10	13	<10	37	17	28	14	35	34	24	21
	1	<u> </u>	<u> </u>		ļ								1				
H YDROCARBURES ARON		S	-			<u> </u>								ļ			
Benzène	rg/L		<0.2	<0,2	<0.2	<0,5	<0,2	<0,2	<0,2	<0,2	<0,2	-0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Toluone	mall		<0,5	<0,5	<0,5	<0.5	<0,5	<0,5	<0,5	<0,5	<0,6	<0,5	<0,6	<0,6	<0,5	<0,5	<0,1
Xy(hie (o+m+p)	org/l		+0,2	<0,2	<0,2										-2.0		
Ethylbenzène	arg/l		<0,2	<0,2	<0,2	<0,5	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0.2
Синене	reg/L	STATE OF THE PARTY		<u> </u>	 	!	 			ļ			-			ļ——	<u> </u>
POLYCHLOROBIPHENYL	-	1		<u> </u>			 			i			-			· · · · · · · · · · · · · · · · · · ·	
Assessor 1260		0,1	i	-			 					ļ	ļ	-			
Asociator 1254	arg/l	0,1	· · · · · · · · · · · · · · · · · · ·	+	 		1		—				 				-
Arochlor 1242	org/L	0,1					 										
CHANGE LANG			 	 	 		 										
HYDROCARBURES POLY	CYCLIOU	ES ARO	MATIQUES			 	 		 	<u> </u>	-		<u> </u>			i	
Phonothèse	mg/l	THE PARTY OF	<0,006	<0,005	<0.005	<0,02	<0,005	<0,005	<0,005	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,005	<0,005
Benzo (b) fluoranthèna	rcg/l		<0,005	<0,005	<0.005	<0,02 <0,02	0.005	40,006	<0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.006	<0.005
Barzo (k) Automathèna	«g/l		<0.005	<0.005	=0.003	40,02 40,02	<0.005	<0.005	<0,005	<0,005	<0.005	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005
Benzo (a) pyréne	*qr/1	0.01	<0.008	<0,005	40,005	<0.02	<0.005	<0.005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	40,005	<0,001	<0,003 <0,001
Bunzo (g.li, l) pérylène	xg/1		-0,005	<0,005	<0,005	<0.02	<0.005	<0.005	<0.005	<0.005	40,006	<0,000	<0.005	<0,005 <0.005	<0,005	<0,0008	<0,0000
Indénu (1,2,3-ad) pyréne	5g/1		40,005	<0,006	40,005	<0,02	<0.005	<0.005	◆0,005	<0.005	<0,005	<0,005	<0,005	<0,005	<0,005	*0.000,00°	<0,0006
Somme des H.P.A (6)	ogg/1	0.2	<0,005	<0,006	<0,005	10,02		-Viend	70,1003	70,003	-0,000	70,000	70,003	-0,043	-O ₁ ULO	-u,uu00	-0,0000

CET du SIDOM du Roumois, Malleville sur le Bec(27), commentaire des analyses de février, juillet, septembre 2021 et janvier 2022

Prélèvement: PZ 8	T			I	1	T	T			
	1		i		***************************************					
******************************	Anı	lée:	. 20	118	2	019	2	020	24	021
	Unités	NORME	31/7	3/10	7/3	27/11	5/5	29/9	17/2	30/9
BACTERIOLOGIE										
Culifornes Totaux	n/100 ml		illisible	ilisible	illeible	illisitre	illleible	illisible	ilisible	Nisible
Colifornus Thermotolémets	n/100 mf	Absence	Illisible	liisibis	1î leib le	Illis:bte	illelbla	filisi'bin	e/diaffi	lilisible
Strupto cogites Fecalis	n/100 ml	Absence	61	>100	16	>100	>100	<1	84	<1
Salin onelles	p/51	Absonce	abs	abs	abs	non dáteoté	ron detecte	non détecté	non detecté	non dáteoté
ORGANI QUE	 		1	i –		 	 - · · ·	i		
D.B.05	mg/L O2	160000000000	11	1.5	2,3	1,8	3	14	41	11
D.C,O	ing/L C/2		55		В	- 5	15	32	<5	43
	1									
PHYSICO-CHIMIQUE										
pH 4 20°C			7,1	7,5	7,1	7	7,3	7.1	7,2	7,1
Conductivité	adS/ent		709	695	705	732	737	729	734	754
Chlorures	mg/l	200	16,2	18,5	16,5	17,2	17.5	17.3	16,7	17.8
Bulfates Calcinos	my/i	248	366.7	3,3 139.96	3,5	112	4,7 120	3,8	4,9	8,2 140
Magaésiun	me/l	50	15,22			13,6	120	150	110	16
Sodition	mg/l mu/l	150	12,32	13.95	8,83	8.02	9	8.7	7.7	9,8
Potassium	mg/	12	5.18	1.27	1,34	1,11	1.3	1.4	1	1.2
Potential Oxydo-Reduction	Rlt		29,61	31.09	30,88	31.51	31.57	31.00	32.3	31.58
Orthophosylintes	Jn.g/l		0.28	<0.15	<0.15	<0.15	<0,15	<0.15	<0.15	<0.15
		September 1			-,,			,,-		
SUBSTANCES NOES RABLE	es			· · · · ·		1				
Nitmtea	mg/1	50	24,7	26,2	24,7	23,1	25,5	27,2	24,8	26.9
Nitritos	mg/l	0,1	0,01	0,01	0,01	<0,01	<0.01	0,01	<0.01	0,2
Ammonium	639/1		< D, D5	<0,05	0.08	<0,08	<0,05	<0,05	<0,05	0,92
Cottone Organique Totale	mg/1		1,1	0,84	2	0,98	2,6	3,8	0.64	2
Mangenèse total	e.g/L	50	169	7,66	49	13,4	45	71	- 5	12
Cujvio	ing/l	1	BOEG, O	0,00126	0,00602	0,00403	0,0046	0,0015	0,0008	0,0018
Zine Azote Kjuldahl	ina/I	5	0,D411	0,0106	0,126	0,0496			0,013	0.0492
Azote Kjuldaki	mg/l		-	!		<u> </u>		!		
SUBSTANCES TOXIQUES	1					_				
Calmium	org/1	5	<0.01	0.02	0.05	0.04	a.bs	9.D4	0.01	D.D.5
Mescure	zg/l	1	< 0.01	<0.01	< 0.01	<0.01	<0.0t	<0.01	<0.01	<0.01
Nickel	σμ/I	50	6.5	1.6	3.3	2.4	3,4	3,2	1.8	3.3
Plant	x;0/I	50	3,1	0.2	1,8	0,8	1,6	<0.1	0,1	<0.5
Chrome total	cg/l	. 50	2,68	0,12	1,56	0,61	1,4	0,13	0,22	0,44
Etnica	org/I		0,4	<0,2	0,2	0.7	0.3	<0.2	<0,2	< 0.2
AOX	σ χ/ Ι		7500	210	440	140	250	460	230	68
	<u> </u>									
HYDROGARSURES AROM AT										
Benzino	<u></u>		<0,2	<0,2	<0,2	<0,2	<0,2	<0.2	<0.2	<0.2
Toluèna	≪g/l		<0,5	¢0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0.1
Xyléne (a+m+p)	wcg/l		<0.2	<0.2					<u>·</u>	
Ethylbenzime Cuntent	org/l org/l		<0,2	₹0,2	<0,2	<0.2	<0,2	<0,2	<0.2	<0,2
Cunterin	008/1	STEEN STEENS								
POLYCHLOROBIPHENYLS	 		i			_		·		
Arochlor 1260	au/l	0,1								
Auchlor 1254	ecg/)	0,1			-		1			
Arochlor 1242	acu/l	0,1						-		
HYDROCARBURES POLYCY	CLIQUES	ROMATIC	UES							
Placenthène	-cg/1		<0,01	<0.01	<0.01	<d,01< td=""><td><0.01</td><td><0.01</td><td><0,036</td><td><0,006</td></d,01<>	<0.01	<0.01	<0,036	<0,006
Benzo (b) tluoranthène	ecg/I		<0.005	<0,005	<d.d05< td=""><td><0,005</td><td><0.005</td><td><0,005</td><td><0.005</td><td><0,005</td></d.d05<>	<0,005	<0.005	<0,005	<0.005	<0,005
Bouzo (k) fluoranthène	∞ø1		<0.005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
Hunzo (n) pyránc	a:#/(0,01	<0,005	<0,005	<0.005	<0.005	<0,005	<0,005	<0,001	<0,001
Danzo (g.l. l.) péryléne	rcg/l		<0,005	<0,005	<0.006	40,005	<0.005	<0.005	<0,0006	40,000B
Indeno (1,2,3-ed) pyréne	cg/l		<0,005	<0,005	<0,005	<0.005	<0.005	<0.005	<0.0000	<0,0006
Somme des H.P.A (6)	mg/	0.2	1		L	1		1	1	

7/3 If sible illsible	27/11	5/5	20 29/9	17/2	121
7/3 If sible illsible	27/11	5/5			
Hisible Hisible	Illable		Tolo		30/9
ilisible 11			1 .	1/4	30/6
11	illiofisio	tilsible	Illisible	IIIIsibila	34616/e
11		illalli	illis b e	lilisible	Historie
abs	>100	20	2	>100	14
	пол détecté	non dáteciá	ron datectá	non détecté	non dátectá
1.1	<1	3	1,3	<1	<1
√ 5	<5	45	<5	< 5	<5
			-		
7,2	6.8	7,4	7.1	7.2	7.1
689	711	702	728	690	700
18,1	23	12,9	14,2	11,9	12,9
, 9	19,2	2,5	2,1	3,3	3,8
192	100	110	130	110	130
12,9	13,2			11	11
12,5	16,2			7,8	8,8
4,3	8,64			0.91	1.1
30,95	31,2	31.77	31.33	32,39	31,46
<0,15	<0,15	<0,15	<0,15	<0, 15	<0.15
_					
8.81	2,13	18.3	17,9	14.7	16.9
0.1	< 0.01	<0.01	<0.01	<0.01	< 0.01
0.21	< 0.05	<0.05	<0.05		0.05
1,5	1,5	2,7	. 1,1	0.73	0,59
106	23,1	25	15	4,6	5,6
0,00611	0.00404	0.002	0.0012	6,0004	0,0007
0.085	0.224	0,029	0.015	0.02	0,0138
			-		
0,1	0,03	0.02	0,03	<0,01	0,03
<0,01	<0,01	<0,01	<0,01	<0.01	<0,01
4,4	3,2	2.5	2.3	2	1,7
2,6	0,8	0.7	0,4	0,1	<0.5
0,99	0,59	0.38	0,18	<0,05	0.22
<0,2	0,5	0,4	0,5	0,6	0,5
100		100	34	140	. 35
<0,2	<0,2	<0.2	<0.2	<0.2	<0.2
<0,5	<0,5	<0.5	<0.5	<0,5	<0.1
<0,2	<d,2< td=""><td><0.2</td><td><0.2</td><td><0,2</td><td><0,2</td></d,2<>	<0.2	<0.2	<0,2	<0,2
•					
c0.01	c0.01	Z0.01	c0.01	<0.006	<0.005
					<0,005
					<0.005
					0.001
					0,001
					0.001
5,000		-5,555	0,000	-0,0000	0,007
	7,2 9889 118,1 9 112,9 1	7.2 6.8 689 7/1 18.1 23 9 19.2 192 100 12.9 13.2 12.5 16.2 4.3 6.8 30.95 31.2 9.15 4.3 0.1 4.3 0.1 4.0 0.1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	7.2 6.8 7.4 688 7.1 702 18.1 23 12.9 9 19.2 2.5 192 100 110 112.9 13.2 12.8 16.2 4.3 6.4 3.1,7 30.95 31.2 31.7 30.95 31.2 31.7 30.95 31.2 31.7 30.95 31.2 30.1 30.1 40.15 40.15 0.1 40.15 40.1	7.2 6.8 7.4 7.1 7.2 7.8 7.4 7.1 7.8 7.1 702 728 18.1 23 1.2 9 14.2 9 19.2 2.5 2.1 19.2 10.0 110 130 12.8 16.2 12.8 1	7.2 6.8 7.4 7.1 7.2 7.8 689 7.1 702 728 890 18.1 23 12.0 14.2 11.9 9 19.2 2.5 2.4 3.3 192 100 110 130 110 12.8 16.2 7.8 9.9 19.1 12.9 13.2 111 12.8 16.2 9.1 12.8 16.2 9.1 13.8 16.2 9.1 13.8 16.2 9.1 13.8 16.2 9.1 13.8 16.2 10.9 14.3 6.64 3.77 31.33 32.39 60.18 60.15 40.15 40.15 40.15 40.15 10.1 40.01 40.01 40.01 40.01 10.2 1 40.05 40.05 40.05 40.05 10.2 1 40.05 40.05 40.05 10.2 1 40.05 40.05 40.05 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 10 40.01 40.01 40.01 10.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0

Prélèvement: PZ 10	7		ξ*************************************	i	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	·,	γ
Fieleverieit; FZ 10	<u> </u>	i	ł						ļ	
		né e:	_ 2	018	2	019	7 2	020	2	1021
	Unités	NORME	5/4		7/3	27/11	5/5	29/9	17/2	30/0
BACTERIOLOGIE		-								1
Collformes Totare	n/100 ml		disible	Illsibte	Illsible	Illisibia	III(e,b)(e	ills:bre	Illisjbla	il le tole
Colifornes Thermotoldrants	n/100 m1	Absence	Illisible	illisible	lifisib la	Illisibie	eldiafill	illjaible	eldisilii	illiable
Streptocognes Féculis	14/100 mL	Absence	91	>100	<1	>100	- 33	63	27	>100
Salmoneites	145↓	Absence	_abs	aps.	abs	non détecté	non détect	ran détagté	non cétecté	non détect
ORGANIQUE	-	<u> </u>	┞——			 		ļ		1
D.B.OS	1 00	((unter-en usada)			-					
D.C.O	mg/I O2		27 173	12	3	4,7	2	4	<1	1.7
0.0.0	mg/I UZ	30 2 3 1 S 3 1	1/3		14	23	8	14	<5	8
PHYSICO CHIMIQUE	i				-			-		-
pH à 20°C		SERVICE SERVICE	7.3	7,4	7.1	7		7.2		L
Conductivité	≥s\$/sm		865	818	617	653	7,3 640	640	7,2 666	7,1
Chloruses	nig/I	200	31.9	14	12.7	13,6				665
Sulfates	mg/l	248	22.8	2.8	1.4	2.1	13,9	14,8	15.2	14,5
Calcium	me/l	William Co.	141.9	149.91	111	99.6	100	8,1 120	98	130
Minandejuan	mg/l	50	16,65	14.2	11.9	13	14	120	13	150
Spilium	mg/l	150	19,36	8,4	162	6.82	7.3	B.9	7.3	7.8
Potantium	mg/l	12	11,3	2,37	1,99	1,6	1.5	1.2	1.4	1.4
Potentiel Oxydo-Réduction	Rh		23,96	24.38	30.92	31.53	31.76	31.62	32,37	31,32
Orthophosphatos	me/l	SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SECULIAR SE	<0.19	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.9
, and the same of	1	eresenments.	10.10	79,10	-0.15	1 10,10	<u> </u>	40.10	40,15	8,0
SUBSTANCES INDESIRABLE	ES					i -				
Nitratus	me/f	50	31.7	25	17.9	18.3	18,5	18.4	18,1	. 32
Nitritu	mg/l	0.1	2,29	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.01
Ammonium	mg/l		<0.05	<0.05	0.08	< 0.05	<0.03	<0.05	<0.05	<0.05
Carbono Organique Totale	mg/l		13	0.7	2.3	3.8	1.1	1,2	0.86	0.89
Manganèse telal	seg/f	. 50	150	104	51.9	37.9	220	130	2.6	240
Cuivro	mg/t	1	0,0398	0.00708	0,0176	0.00399	0,0033	0.0019	0,0007	0,0022
Zine	nig/l	9	0,133	0,0097	0,212	0.043	0.026	0.014	0.018	0.0412
Azota Kieldahl	10.9/1	1.								
SUBSTANCES TOXIQUES										
Cadonium	cg/l	. 5	0,26	0.04	0,05	0,02	0,04	<0,01	0,01	0.09
Mercaire -	<u> </u>	1	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Niekd	×;g/t	. 50	7,3 .	4.6	7,3	4,1	10	7	2,9	14
Plomb	-x#/L	50	8,1	2,2	6,3	0,8	2,9	1,1	<0,1	2,8
Chronce total	vçe/i	50	2,65	1,54	0,81	0,49	0,56	0,39	<0.05	0,71
Etain	otg/l		2	0,2	0,2	<0,2	<0,2	<0.2	<0,2	<0,2
AOX	.cg/1	18.00 M	520	190	200	77	120	10	76	290
HYDROGARBURES AROMAT			_							
HITURUGARBURES ARUMA I		SENSION CHESING					ļ <u>.</u>			
Teluine	xg/l		<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Yylinu (e+m+e)	veg/t		<0,5	<0,5	<0.5	<0,5	<0,5	<0,5	<0,5	.40,1
System (or mrp)			<0.2	<0.2	40.0		-0.0			
Zumene	αg/l πg/l			40,2	<0.2	<0,2	<0,2	<0,2	<0,2	<0,2
- manual N	- 42g/1	500 miles (1958)							!	
OLYCHLOROS PHENYLS										
Amphier 1260	र्जात/	0.1								
Vrodilor 1254	oug/I	0,1								
Arochior 1242	20/l	0.1	-							
	7981				-					
YDROCARBURES POLYCY	CLIQUES A	ROMATIO	Ulis		-			i	_	
luoraidiène	xg/1	18811811881	0.056	<0,01	<0,01	<0.01	<0.01	<0.01	<0.005	<0.005
Scazo (b) fluorpathéne	icg/1		0.027	<0,005	<0,005	<0.005	<0.005	<0.005	<0,005	<0.006
crizo (k) fluorinificac	x (t/1		0,012	<0.005	<0.005	<0.005	<0,005	<0.005	<0.005	<0,006 <0,008
Icazo (a) gyrène	.ce/l	0.01	0.017	<0.005	<0.005	<0.005	<0.005	<0,006	<0.001	<0,000 <0,001
lunzo (g,ln,i) páryláto	xg/l		0.026	<0.005	<0.D05	<0.005	<0.005	<0,005	<0,0001	
udéno (1,2,3-cd) pyrène	×g/l		0.062	40,005	<0,005	<0.005	<0,005	<0,005	<0.0008	<0,0006
comme des H.P.A (6)	xg/l	0,2		-1000	-,	-01000	.0,000	10,000	-0,0000	~U,UUUB

Prélèvement: Source MARNOT

					1000					2003	4//4		2004	14	-614		K65			2000	4.0	** 15.4	20	107	T'A dist	46.0	20		17740		2009	2144	20		20		20		201	
BACTERIOLOGIE	United	HOUNE	19911	1679	142	232	124	200	18/0	43	•					•								208	26711	2014	100	70.8	Laiz	. E(4)	244	9/12	TIME	441	68	2012	205	4411	2011	4,0
Colifornies Totales	In 100 iii	3888	ಕೆ ಬಿಸಿ			93	4	12	230			100	10	18	13	18		9					20	hec	Inex	ingx	10	70	90	8	inda	hex i	lites	<38	iget	hex	inex	hex	inex	Inex
Colifornia Thermotolemists Stranoopiants Récaux		Phrence		\vdash	73				23		38		1	- -		.	2300		40		10	40	410	8		10			90	4	irex	Inex	Irace	130	94	197	< 18	<16	30	418
Salmonelles		Attence		1-	1 8							_	ð		Ť	<u> </u>	- 6	_	Ť	* 100	_	Ü	- ` -	-		ě		- 10			Ť				- 8					
																																				=				
D.B.OS	I mell (V	NAME:	410	_	62	610	610	- 45	46		_		45	_	_		₹5					45				* 5		_		45	_		_	- 65	-65	₹5	-75	- 45		-45
D.C.O					21				433				<3D				<30					<3D				<30				₹30		-			<30					
PHYSICO-CHIMIQUE							-																												_	=	_	=	\equiv	=
pH & 20°C	_	8806988	H 7	7.2	7.5	7.2	1 7.3	7.1	7.2	7.2	7.2	7.1	7	- 7.1	7	7.2	7.1	7.1	7.15	7.2	7.2	7.26	7.2	7.2	I. 7.1	7.2	7.15	7.15	7.1 3	7.3	7.3	7.2	7.25	7.15	7.2	7.2	7.3	7.28	7.2	7
Cendralistic	uSkoo		BIO	588	B12	558	B1B	630	827	619	626	630	634	637	638	640	837	641	B43	844	635	635	616	621	840	637		829	627	649	629	527	632	527	633	837	639	639	B3B	633
Chloruces Buidales		200							24,8				25.3			-	28.4					27.5				28				28.3	=	I			28.1					
Colcium	mg/I	250	f 1D		102	100.6	110	111	104.3				110.8		-		12			_		1D 120			-	102.4				1022	_		⊢	118.5	102.3	1207		110	107	103
Maggeston	mg/4	60	8		9,22	8,8	8.4	7.8	7.B				8.8	<u> </u>			76					9,53				9,68				2.14				9.43	10	. 10.14	9,72	8.82	8.45	8.63
Sorium Potestitus		160	11,8		1D,5	10.4	12,2	11.4	11.5 1.8				8,2	_		_	1.8					13	-		_	11,7	\vdash			11.5			\vdash		13.2					
Polentiel Oxydo-Reduction	mgFl Rh	12	28.6	20.8	18	27.8	19.7	2034	27.8	23.2	19.08	22.23		20.2	20.6	21.06		21,1	18.6	18.1	20.62		23.2	186	23.1		10.2	20.53		20.4	24.76	22.6	19.4	21.78	20.7	22.5	239	22.5	28.2	20.2
Orthop:xeipfutes	Pam	59899	0,3		0,18	0,2	0.19	<0,15	0.16				0,19				0,2					<0,16		1.51	4-1-	<b,18< td=""><td></td><td> </td><td></td><td><d.15< td=""><td></td><td></td><td></td><td>40.15</td><td>-01.15</td><td>9,18</td><td><0.15</td><td>0.16</td><td>40.15</td><td><0.15</td></d.15<></td></b,18<>				<d.15< td=""><td></td><td></td><td></td><td>40.15</td><td>-01.15</td><td>9,18</td><td><0.15</td><td>0.16</td><td>40.15</td><td><0.15</td></d.15<>				40.15	-0 1.15	9,18	<0.15	0.16	40.15	<0.15
(SUBSTANCES INDESIRA)	u Fs																						_												,,		,			
Kitrilei	rpgi	E0 .	20	1					32,2				30				31,3					25.				31,1				33	- 1				31					
Niinte	HgA	0,1	<0.01		<0.04	<0.02	<0.62	5.02	<0.02				< 0.02				<0.02					<0.00				<0.05				<0.08				<0.08	40,08	<0.08	< 0.63	<0.08	<0.05	40.05
Ammonium Corpone Organique Totala	109/1	2002	49,1	40.7	0,64	<0.06	10.63 40.5	40,00	<0.05	1.4	12	0.7	<0.03	0.7	×0.6	0.6	<0.05 0.7	0.7	-07	7	28	<0.0d 0.6	20.5	0.6	76	40.05	0.0	0,7	<0.6	10,03	¢∩ B	40.6	04	<0,05	<0.08	*0,0\$	<0.00	40.06	40.01	±0,01 ≤0.8
Minnespèse total	myl	700	(1	1	<10	<1	· <1	. 4	9		<u> </u>	***	<2			<u> </u>	42		~ 1		- 2.2	<3			- V.S.	4	- 72			42	717			42	- 42	42	10.6	1	40,6 (₹Q,B
Curves	me/i	1 7			0.002		40.04	40.04	<0,04	i			<0,D4 €				<0.04					40.04				40.04		- 1		<0.04				40.04	40.D4	<0.01	4D.04	49.64	<0.005(0.005
Azolo Kieldalil	mg/s	- 1		├	2	*10,01	*U/U3	40,01	+0,D4	-	_		40,D4	-		_	<0,94	-				=0,04				40.04	-			*D.DM				40.04	40.04	eu og	₹ 0.04	eu.qa	9.00.9	10,004
		·					_	1	•		_	•																								_				_
SUBSTANCES TOXIQUES Caumon		1 8	1 45	_	- <1	<1	(1	-11	- A1	_		_	(4)	÷												<0.8				+D.5	_			<0.5	40.6	<0.5	-0,5	40. 5	<0.5	<0.5
Aferens	µg/l	1	40.05	_	0.02	<0.3		49.3	40.3	-	_		40.3	-		_	40.3		-			<0.3		-	_	1.5	\vdash		_	40.3				40.3			40.3		40.3	
Niekel	uw!		45	_	61	44	44	<4	10	45	\vdash	_	45	-	_	_	45	-				-55		-		45	-		_	45	_		_	15	45	₹5	45	41		51
Plonity .	J-81	50	5	-	11	<1	- 21	12	12			-	<2	$\overline{}$		-	12					<2				-2	-	— i	\neg	42				-62	₹2.	<2	₹2	<4	<2	2,7
Cirante total	JLB/1	50	<6		<1	<0,6		. 42	+2				42				-12					42				4				42				12	*2				<5	
Etourt	µg/1		<16		410	< K0		<10					420				<10					<0.01				<1D										410	44		42	
AOX	μgi	S. 100.6	57	Ь.	14	11	11	-10	410				10				21	٠				18				15	لبسيا			410				<10	460	460		¢10	<10	460
HYDROCARBURESARO	ATIQUE	s														., .			•														_			7				_
B-staint	jug/1					<1	141	41	41				<1				² 1					<1				"रा				e1				e 1	-L1		<1		۲1	
Tuluipi	9.91				_	41	41	41	<1	_	\vdash	_	Ŧ				<1.					1				<1				41			ᅜ	<1	-11	┌	41	•1	41	<1 <u></u>
Xylins (o+ns+p) Ethylbennine	fight fight	STATE OF THE PARTY	—	₩		41	(1	<1	<u><1</u>				42	_	├	\vdash	<1 <1			-		41		\vdash		41 41	-			41				41	41		- C1	?	त	
Captera	lraq si gra				-	-1	+"	<1	41				- 41				<1					-21			├	- 4	-		_	**				1	1.31	-	- "	~		<u></u>
		resconden	•	_	•																	-1																		
POLYCHLOROBIPHENY										_		_																												
Azeolder 1200	اوير	0.1	_	_	_		40.020 40.020		<0.02	_	_		<0.02			_	<0.02	\Box	-1	_		40.02 40.02				<0.02	ш		T		_	_	⊢ "	<0.03	10.05		40,05 40,05	1	_	
Arosidor (254 Arochiot 1242	FIET.	0.1	-	-	\vdash				40,02	-	_		<0.02	\vdash		-	<0.02					<0.02				40.02 40.02	\vdash	_	\rightarrow	-	-			<0.05	<0.05 <0.05		40,05	_	\rightarrow	
	1 12		_	_	_	-0.020	10.020	, ~u.uz	1 70.10		_	_	10,02		_	_	10,02	ш		_		-0,02		-	Ь	*UNZ					_			·v.w	10300	_	10.00		_	_
HYGROCARBURESPOLY			MATIQU	25							_	_												=														=	\Box	=
Fluorantheius	μgt			1					40.05	<u> </u>			<0,005				<0.005							\Box		L			_	_							-			
Benzo (b) fluccondicine Benzo (k) fluccondicine	µxt µyt	- 188		١					90.05 40.05		_		<0.005 <0005				<0005 <0005								<u> </u>	-			_	\rightarrow	-		\vdash		\vdash	-	\vdash	-	\rightarrow	
Benza (s) pycha	µgt µgt	0.D1	1	-		40,006			40.05				40.005	-	_	-	- D.005	\vdash				<5.002		\vdash	<u> </u>	40.D02		-		40.002	$\overline{}$	_	\vdash	40.002	-	40.002	CD 012	40.002	<0.002 ×	0 032
Bonzo (g.lui) naryláne	Junt 1	2007000							40.02		-		<0.020				40.020	-		٠.		-,-02																		
Indian (1,2,3 cd) pyrana	μgl						< 0.020						<0.020				<0.000																							
Sonma des H.P.A (8)	160-L	0.2	1			<0.08	Γ	<0.03	₹0,03				A.d				n.d					<0.00				<0.03				40,08	\neg			<0.03		40,03	₹0,03	40,03	40,03	10,03

n d = non détecté

BAOTERIOLOGIE Cultimen Totaux Surface	2009 200 2/10 17/2 <	30/9 (Taible 1/s/ble
ACTIRNICUOCIS Celliforna Tutane Anton II STATE ATT 1 1975	1/10 17/2 c1 (figible c1 (figible c1 (figible c1 (figible c1 (figible c1 (figible c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 c1 (figible c1 (fig	30/9 (Taible 1/s/ble
AACTENIQUOSE	c1 flishle c1 flishlis 4 c1 t ron célepté non dátesté	Halbie Halble
Cell Domes Telestack Selection Selec	<1 Rabia 4 <1 fé non détecté non détecté <1 <1 <1	Tialble 4
Colifornia Thermedelenske Air	<1 Rabia 4 <1 fé non détecté non détecté <1 <1 <1	Tialble 4
September New September	4 <1 fé non déteoté non déteoté	4
Saleymethilis	ti non célepté non détecté	non détac
D.D.O.S mayl. C2		Fruit Gerac
D.D.C.S may C2		
Discrete Part Discrete Part Discrete Discr		41
PHYSICO-CHIMIQUE 7.3 7,3 7,3 7,3 7,3 7,5 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,1 7,2 7,2 7,2 7,2 7,2 7,1 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2	<5 <5	4 5
Hell 2070: - Cachesirvilla - Scheme 1.3		
Conditional Section		
Chiantem ngri 200 82 29.7 22,6 29.4 28 29.4 29.1 39.9 30.3 39.7 30.3 39.7 29.4 30.3 39.7 29.4 30.5 30.5 39.7 29.4 30.5 30.5 39.7 29.4 30.5 30.5 39.7 29.4 30.5 30.5 39.7 29.4 30.5 30.5 39.7 29.4 30.5 39.4 30.5 39.7 29.4 30.5 39.5 39.5 39.4 30.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39	7,1 7,2	7,2
Selfere msrl 250 8 7 103 9.7 10 10 10,2 10,5 11,1 10,2 10,6 10,5 10,5 Collam msrl 250 88 11,5 11,5 11,5 21,1 11,2 11,5 21,1 11,5	662 865	685
Cidates med \$8886 113.7 115.94 110.23 116.25 121.05 110.27 110.27 110.75 110.75 110.25 110.25 110.27 110.25	28,5 28,5	28,6
Maceleine	10,1 10,6	11,3
Selime	9.2 9.6	110-
Peterskind Copyol-Reliation #sg4 12 23 242 245 245 245 245 228 266 277 3.54 241 167 2 167	9.2 9,6 11 12	9,1
Plantic Cowle Reintains St 23.54 30.16 30.15 27.6 30.23 39.86 37.66 30.04 30.33 30.47 32.35 Plantic Cowle Reintains mgA 30.16 30.15 30.15 30.15 30.15 30.16 30.15 30.16 Plantic Cowle Reintains mgA 30.35 30.46 30.15 30.15 30.15 30.16 30.15 30.16 Plantic Cowle Reintains mgA 30.35 30.47 32.35 Plantic Market Si NDESIRABLES String Reintains mgA 30.35 30.47 30.15 30.15 30.15 30.15 30.15 Plantic Cowle Reintains mgA 30.35 30.47 30.35 30.15 30.15 30.15 30.15 Plantic Cowle Reintains mgA 40.05 40.05 40.05 40.05 40.05 40.05 40.05 40.05 40.05 Plantic Cowle Reintains mgA 40.05 40.05 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 Plantic Reintains mgA 40.05 40.05 40.05 Plantic Reintains mgA 40.05 40.05 Plantic Reintains mgA 40.05 40.05 Plantic Reintains mgA 40.05 40.05 Plantic Reintains mgA 40.05 40.05 Plantic Reintains mgA 40.05 40.05 Plantic Reintains mgA	1.8 1.9	2
Otherhoptoss mg/h 20 3,3 0,16 0,19 0,19 0,19 0,16 0,07 0,15 0,16 0,15 0,19 0,19	32.01 30.61	32.23
Wilsters	40,15 0.16	<0.15
Wilsters		
Nichten	40.3 38.6	40.9
Ammention ### 4	40,3 38,8 <0,01 <0,01	40,9
Circhoux Departure Totals	40,05 40,05	< 0.05
Messaria telul	0.42 0.7	0,47
Chieve Mg/I 1 5,0091 0,00247 0,0005 0,0005 0,0005 0,0005 0,0002 0,0002 0,0005	0.16 1.2	0.2
2008 2008	<0,0001 <0,0001	< 0.0001
Assistation Assistation	0,0012 0,0011	0,0015
Celarium		
Existing Sept. 5 ct ct ct ct ct ct ct		-
	<0.01 0.01	0.02
Nisket	40,01 <0,01	<0.01
Citizant Infold Spl	0,3 0,3	0,3
State Stat	<0,1 <0,1	<0,1
ADX aq/1 65 16 13 30 415 22 410 32 20 13 19 410 **YOROGARBURES AROMATIQUES** Tabelian Tq/1 40,2 40,2 40,2 40,5 40,	0,52 0.35	0,35
YORQGARBURES AROMATIQUES	40,2 40,2	40.2
	34 11	43
Relstan	 	
Debleton	<0,2 <0,2	< 0,2
Ukurberahns 백자 작가 다 전 보다는 다 다 그 전 1.5 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2	<0.5 <0.6	<0,1
Tandro op/i		
	<0.2 <0.2	<0,2
	!	⊢—
POLYCHLOROBIPHENYLS		
Area/Alor 12:00 sqt/1 0,1		
weekler 1254 og/1 0,1		
Assektor 1242 mx(l 0,1		
YOROCARBURES POLYCYCLIQUES AROMATIQUES	1	
Tuornathidate (-g/1 (-0.01) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01	<0,01 <0,005	<0,005
(a) (b) (a) (a) (a) (a) (b) (a) (b) (a) (b) (b) (c) (c) (c) (c) (d) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	<0.005 <0.005	<0,005
1920 (k) floquanthirm -g/l 40,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,	<0.005 <0.005	<0.005
Eniza (a) pyrinia 9g/L 0,01 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0	<0,005 <0,001	<0.001
Dates (g,li, i) pury line -g/1 -0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005	<0,005 <0,0006	<0,0006
ndéno (1,2,3-a) pyrèus - g/l - (0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005		<0,0006
Springer (des H. P. A. (6) 92/1 0.2 40,005 40,005 40,005 40,005	<0.005 <0.0008	

Prélèvement: Source du MOULIN à PAPIER

		Prejeven																																		
	Ann 64: 1996	1990 1	1080 200	X 300	1 2002	, -	2003		_	2004	_	_	- 21	nos			06		2	007		T		2009			2003		20	010	1 2	011	7 20	112	2013	_
BACYERIOLOGIE	Unités NORME 19/11	19/6	10/2 23.	2 227	25/8	18/3	49	2/12	17/3	29/8	11/10	13ri	17/3	298	6/10	14/2 2	\$40 BJ	13/3	12/9	29/8	58/11	27/3	18.4	25/9	17/12	EF4	418	SF12	11/2	20,7	20/7	22/12	2048	28/11	JB 2	20711
Callfornes Tolars	10/100 nt 500 500 230		430 1 15	1	210	75	1	46D	43	I 8:	15	< i		160	75	70 10	ax I B	lasz	Inex	Inex	her	lesx	10	12	\$0	lask	laar :	inex	Des	12	iner	iner	inex	loèx	inex I	lnek
California Tarretotefants	e/100 ml Absence 9		430 7	4	23	4		43		1.1				23	23	50 11	64 5	Yenl 0	< 16	10	inex	leex	10	1	10	hex	Inex	Inex	UI PX		7101	371	<15	46	40	30
Streptocoques Facality Egirmonellas	n/TO3 mll Abunce B		83 15 0 0				[41		- (1	<1	1 2	1	23	38	3 21	00	4	2	44	2	12	2		1	<1	. 3	12	ihes	- 1	6981	46	<1.6	15		< 15 D
	,, ,,								1				1												_										I	
ORGAN QUE	mg/1 G1 35 410		•2 T <1	0) <10	<6	- 45		····		<5				56	,		-	- <5	_		_	<5					-				3		16			
D.CO	11g/1 O2 300 85 13				430	130			-	<30			+	430				<30				<3D		1	Í	*30				<30			<30			
PHYSICO-CHIM QUE																															_	,	$\overline{}$			_
para 20°C	7,1	7,2	7.1 7.3	7,3	7	7,2	7,2	7,2	7,1	7,05	7,16	7	7,26	7,15	7,15	7,2 7	2 7.	5 (7.2	7,4	7.2	7.16	7,2	7.2	1 7.1d	7.1	7 1	7.3	7.2	E 7.35	7.15	7.2	7.15	7.25	7.2	7.35	7
Conductivité	piSrem ti26		808 59					636	833	836	638	02.9	609		634	643 B	14 6:	637	633	525	645	623		831		550	632	625	625		fD1		J 843			748
Ctularums Sulfator	mg01 200 21		22,5 21 9.7 13	23		23,5	┤—		 	23.3			-	24,6	-	_	-	26,7 1D	_			26		-		26	_						25.2			
Calcille	me _s l IDB		1D2 108	8 111,	3 120.8	100				115,3				112				110				102,9	1	1		104				114.7	£ 104.1	106,0	116	113	114	108
Megaréatium Sedwim	mg/l 350 11,5		10,1 9 10,1 10,	8.4	8,7	9,01	-	-	-	9,4			1-	10,1	-		_	10,18	1	-	-	9,89		ļ		10,12				10,46	10,11	9,69	10,6	9,08	9,44 1	9,11
Potassium	inter1 12 1.8		2,4 2,3 16 27	t B	1,8	1,4		+		1 2				1,6				2	1	+	+	2,4	1	 		1,7		-	_	5	2,3	2,7	1,9	2,3	1,9	1,9
Poleodel Chyrio-Réduction Orthophosphotes	Rh 28,7	28.6	16 27 0.10 9,2	s 20,4	20,21	28,3	23,3	18,88	22,84	21,8		21,1	21,89		21.07	18,9 1	1 20	6 21.2		19.5	- 23			20,24	20,8		24,B	21,91	18,4	21,29	21	22,3	23,2	22,4	26,8	29.2
		4	W10 0,4	1 0,22	1 40,13	40,15				0,15	_		_	0.21				<9,16		<u> </u>	1	0,71	_		_	≪0,15			_	<0,16	10,15	0,21	<0,15	0,10	0.10 1 4	0,16
SUBSTANCES INDESIRAE	SLES mg/l 60 25																		_	_									_				\Box		\Box	
Nitriles	mg-1 D,1 <0,01		0,04 40,0	2 40.0	2 <0.02	₹0.02	<u> </u>	1		27,5 <0,02				29.2 <0.02	-	-	+	30,6 <0,05			┾	39.3		-	_	40.05			_	30,8 48.08	10.05	40.05	=0.03	40.05	32,2 S	0.05
A remonium.	mg/l <0,1		40,0	15 40,0	2 <0.02 5 <0.05	93,05				<0,05				< 0.08				<0,66				<0.00				<0,05				<0,05	40,05	0,05	FD,05	40,05	<0,01 <	0,D1
Carbone Organique Totale Minigaciós total	mg/l 80 1		1,2 0,1 <10 7			1.4	1.5	1,2	0.8	1 1	0,9	40,5	9,3	9,8	-1	D,7 G	9 1,	4	2,6	0,8	0,6	- 6	97	0.7	0.7	<0.6 <2	40,6	6.6	0.7	1 2			40.5		<0.6	
Cuivre "	mg/l 1 <0.05	0	0.034 40.0	14 0.0	4 <0,04	<0.04		├		40.04			-	40.04	 -		-	<0.D4	-	_	\vdash	<0.04	-	+	_	<0.04		_	├				40,04			
Zžnu A nao Kjejdahl	mg/1 5 <0.05		0.01 <0.0 1,9	11 90,0	1 40,04	40,04				43,04				<0.04				<0.04				<0,04				49,04				40,04	40,04	<0,04	40,04	0,04	D 03 1 <0	J,094
-			1,01						_		-					_			_	Ь.	٠	-								_	_		-			_
SUBSTANCESTOXIQUES																																				_
					-,		_				_				_																		+		_	
Cadmiting	pgd 5 c9		<) <1			<u><1</u>			ļ	<1				<1			T	(e)				49,5		-		40,5				<0,5						40,6
Codmitter Mercure Nickel		- 4	4] 41 0,02 40, 41 44	3 40,3	€0,5		40			<0.3 <6				<1 40,1 <5				40,3 46				49,5 49,1		1		40,5 40,3 43				<0.5 <0.3	<0,5 <0,3 <5		<0.3	₹0,3	<0.3	40.3
Mescure Nickel Pjespb			0,02 40,	3 40,3 et	40,5 <4	<0,3 <6	ત			<0.3				40,3				40,3				49,3		i i		<0.3				<0.3	40,3	<0,3	40,3 46	<0,3	<0,3 <	40.3 41
Mercuro Nickol Piomb Chrome total	RgA 3 <3	•	0,02 40, 41 44 41 41 41 40,	3 <0,3 e4 <1 5 <0,6	4 4 4 42 42	<0,3 <6 <2 <2	4			40.3 45 42 42		_		40,3 <5 <2 <2				40,3 45 42 42				42 43		i i		40,3 43				<0.3	40,3 45 42 42	40,3 42 42	40,3 49 42 45	<0,3 <1 <2 <8	<0,3 <<1 3 46	40.3 41 42 46
Mescure Nickel Plomb Chacme total Etain	F24 5 <3 F24		0,02 40, <1 <4 <1 <1 <1 <0, <10 <10	3 <0,3 <4 <1 5 <0,6 3 <0,0	40,3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	<0,3 <6 <2 <2 <2 <0,01	4			<0.3 <5 <2 <2 <50				<0,3 <5 <2 <2 <10				49,3 45 42 42 41,01				©,3 ≪ ≪ ≪ 410		!		40,3 43 42 42				<0.3 40 40 40 40 40 40 40 40 40 40 40 40 40	<0,3 <5 <2 <2 <10	<0.3 <5 <2 <2 <10	40,3 43 42 45 44	<0,3 <1 <2 <8 <2	<0.3 <<1 3 <65 <2	<0.3 <1 <2 <6 <2
Mercuro Nickal Picrub Churche total Bisin AGR			0,02 40, 41 44 41 41 41 40,	3 <0,3 <4 <1 5 <0,6 3 <0,0	40,3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	<0,3 <6 <2 <2 <2 <0,01	ನ			40.3 45 42 42				40,3 <5 <2 <2				40,3 45 42 42				42 43		!		40,3 43 42				<0.3 <0 <2	<0,3 <5 <2 <2 <10	<0,3 <0 <2 <2 <10	40,3 43 42 45 44	<0,3 <1 <2 <8 <2	<0,3 <<1 3 46	<0.3 <1 <2 <6 <2
Mercuro Nickol Plomb Ctrome tatal Plain AOX HYDROGARBURESAROA	1/9/1		0,02 40, <1 <4 <1 <1 <1 <1 <1 <0, <10 <11 24 <11	3 <0,3 <4 <1 5 <0,6 0 <0,0 0 11	3 <0,3 <4 <2 5 <2 1 <10	<0,3 <6 <2 <2 <0,01 410	40			<0.3 <5 <2 <2 <50 <10				<0,3 <5 <2 <2 <10 18				40,3 45 42 42 42,01				49,3 43 42 410 44		1 1		<0,3 <2 <2 <2 <10				<0.3 40 42 42 43 410	<0.3 <3 <2 <2 <10 <00	<0.3 <5 <2 <2 <10	40,3 48 42 46 44	<0.3 <1 <2 <8 <2 <10 <10	<0.3 <<1 3 <65 <2 <10 ·	<0.3 <1 <2 <6 <2 <10
Mercure Nickel Plant Plant Ctrome total Etain AGS HYDROGARBURESARON Descript			0,02 40, <1 <4 <1 <1 <1 <1, <10 <10 24 <11	3 <0.5 <4 5 <0.6 0 <0.0 11	3 <0,3 <4 <2 5 <2 1 <10 <10	<0,3 <6 <2 <2 <0,91 <10	40			<0.3 <5 <2 <2 <50 <10				<0,3 <5 <2 <2 <10 18				40,3 45 42 42 40,01 11				49,3 45 42 410 44				<0,3 <2 <2 <2 <10				<0.3 40 42 42 410	40,3 45 42 42 410 450	<0.3 <5 <2 <2 <10	40,3 48 42 46 44	<0.3	<0,3 <	<0.3 <1 <2 <6 <2 <10
Mesoure Nickel Plemb Ctrume latel Elain AGN HYDROGARBURES ARON Denoises	10A 3 43 12A 12A 14A 1		0,02 40, <1 <4 <1 <1 <1 <1 <1 <0, <10 <11 24 <11	3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	<0,3 <6 <2 <2 <0,01 410	4			<0.3 <5 <2 <2 <50 <10 <11				<0,3 <5 <2 <2 <10 18				40,3 45 42 42 40,01 11				43 42 42 410 44				<0.3 <2 <2 <2 <2 <10				<0.3 40 42 42 41 410	40,3 48 42 42 410 450	<0.3 <5 <2 <2 <10	40,3 42 45 44 44 41	<0.3 <1 <2 <8 <2 <10 <10 <11 <11	<0,3 <	<0.3 <1 <2 <6 <2 <10
Nescure Nickal Plensh Chrome tatal Chrome tatal Chrome tatal Chrome tatal AGN HYDROGARBURES AROM Descion Tolisino Nython (orm: p) Ethyllomoshine			0,02 40, <1 <4 <1 <1 <1 <1, <10 <10 24 <11 <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1, <1 <1	3	3	<0,3 <6 <2 <2 <0,93 <19	4			<0.3 <5 <2 <2 <50 <10				<0,3 <5 <2 <2 <10 18				40,3 45 42 42 40,01 11				49,3 45 42 410 44		1		<0,3 <2 <2 <2 <10				<0.3 40 42 42 410	40,3 45 42 42 410 450	<0.3 <5 <2 <2 <10	40,3 48 42 46 44	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10
Mescure Noted Places Chrome tabl Chrome tabl Etab AGX HYDROGARBURESAROA Descript Tollishee Xyttan (contry)	100A		0,02 40, <1 <4 <1 <1 <1 <1, <10 <10 <10 <11 <24 <11 <1 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	3	3	<0,3 <6 <2 <2 <0,9 <10 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	4			<0.3 <5 <2 <2 <50 <10 <11 2.9 <2				<0,3 <5 <2 <10 18 41 41 41				40,3 45 42 42,01 11				40 40 41 41 41				<0.3				40,3 40 42 42 410 410	40,3 48 42 42 410 400 400	<0.3 <5 <2 <2 <10	40,3 19 42 46 44 44 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Mescure Nickal Pierol Chrom tatal Elizam AON HYDROGARBURESARON Descript Tollaine Nython (error) Elizamente Commente	PSA 3 -3 -3 -3 -3 -3 -3 -3		0,02 40, <1 <4 <1 <4 <1 <4 <1 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	3	41 41 41	<0,0 <6 <2 <2 <0,0 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1	4			<0.3 <5 <2 <2 <50 <10 <1 2.9 <2 <10 <10				40,3 <5 42 42 410 18 41 41 41				49,3 45 42 42,01 11				(株) (で) (で) (で) (付) (付) (付) (付) (付)		1		<0.3	- 1			40,3 40 42 42 410 410	40,3 48 42 42 410 400 400	<0.3 <5 <2 <2 <10	40,3 19 42 46 44 44 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Nescure Nickal Plensh Chrome tatal Chrome tatal Chrome tatal Chrome tatal AGN HYDROGARBURES AROM Descion Tolisino Nython (orm: p) Ethyllomoshine	PSA 3 -3 -3 -3 -3 -3 -3 -3		0.02 40, 41 41 41 41 41 41 41 41 41 41 41 41 41	3	41 41 41	<0,0 <6 <2 <2 <0,00 <10 <10 <11 <1	4			<0.3 <5 <2 <2 <50 <10 <1 2.9 <2 <10 <10				40,3 <5 42 42 410 18 41 41 41				49,3 45 42 42 42,01 11 41 41 41 41				(株) (で) (で) (で) (付) (付) (付) (付) (付)		1		<0.3				40,3 40 42 42 410 410	40,3 45 42 42 410 400 400	<0.3 <5 <2 <2 <10	40,3 42 45 44 44 41 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Miscroe Niskad Plasab Chreent sind Bain AOX IYYOROGARBURESANOI IRosado James AOX Sylvano Gerenza) Eligiforoshar Comens POLYOFILOROBIPHENYI Areeldor 1200 Areeldor 1204 Areeldor 1204	DA 3 -3 -3 -3 -3 -3 -3 -3		0.02	3	3	40,3 46 42 42,09 419 41 41 41 41 41 41 41 41 41 41 41 41	4			<0.02 <0.02 <0.02				40,3 45 42 42 410 18 41 41 41 41 41 41 41				49,3 45 42 42,01 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41				40 41 41 41 41 41 41 41 41 41 41 41 41 41		1		<0.3				<0.05 <0.05 <0.06	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td><0.3 <5 <2 <2 <10</td><td>40,3 42 45 44 41 41 41 41 41 41 41 41 41</td><td><0.3</td><td><0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1</td><td><0.3 <1 <2 <6 <2 <10 <1 <1</td></p<>	<0.3 <5 <2 <2 <10	40,3 42 45 44 41 41 41 41 41 41 41 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Mescre Nackal Placeb Chrome tend Each HYDROGAR BURESAROA TOminie Tominie Nyfen (errory) Nyfen (errory) Tominie Comene POL VOHL OROBIPPERYL Arvellor (200	PS-2d 3 -3 -3 -3 -3 -3 -3 -3		0.02	3	3	40,3 46 42 42,09 419 41 41 41 41 41 41 41 41 41 41 41	<5			<0.02 <0.02 <0.02 <0.02				40,3 42 42 410 16 16 41 41 41 41 41 41 41 41 41 41				49,3 45 42 42,01 31 31 41 41 41 41				(8,02)			F	<0.3				<0.05 <0.05 <0.06	40,3 45 42 42 410 400 400	<0.3 <5 <2 <2 <10	40,3 c8 42 45 44 41 41 41 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Miscroe Niskad Plasab Chreent sind Bain AOX IYYOROGARBURESANOI IRosado James AOX Sylvano Gerenza) Eligiforoshar Comens POLYOFILOROBIPHENYI Areeldor 1200 Areeldor 1204 Areeldor 1204	1907 5 4 1 1 1 1 1 1 1 1 1		0.02	3	3	40,3 46 42 42,09 419 41 41 41 41 41 41 41 41 41 41 41	<5			<0.02 <0.02 <0.02				40,3 45 42 42 410 18 41 41 41 41 41 41 41				49,3 45 42 42,01 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41				40 41 41 41 41 41 41 41 41 41 41 41 41 41		1		<0.3				<0.05 <0.05 <0.06	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td><0.3 <5 <2 <2 <10</td><td>40,3 42 45 44 41 41 41 41 41 41 41 41 41</td><td><0.3</td><td><0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1</td><td><0.3 <1 <2 <6 <2 <10 <1 <1</td></p<>	<0.3 <5 <2 <2 <10	40,3 42 45 44 41 41 41 41 41 41 41 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Masure Masure Pleads Pleads Pleads Checane tand Bain ACOX HYORECAR BURESAROA HYORECAR BURESAROA Tolsino Tolsino Denoice POLYCHL GROBBPH BRYL Arebble 1200 Ansellor 1234 HYORECARBURES POLY PHORECARBURES POLY PHORECARBURES POLY PROCEASERURES PROCEASERURES PROCE	PAG		0,02 40,000 41 44 41 41 41 41 41 41 41 41 41 41 41	3	3	40,3 46 42 42 40,93 410 41 42 40	45			<0.3 <6 <2 <2 <50 <10 <2 <1 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <41 <42 <42 <42 <43 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <44 <				40,3 42 42 410 18 41 41 41 41 41 41 41 41 41 41				49,3 45 42 42,01 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41				40 41 41 41 41 41 41 41 41 41 41 41 41 41				<0.3				<0.05 <0.08	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td><0.3 <5 <2 <2 <10</td><td>40,3 42 45 44 41 41 41 41 41 41 41 41 41</td><td><0.3</td><td><0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1</td><td><0.3 <1 <2 <6 <2 <10 <1 <1</td></p<>	<0.3 <5 <2 <2 <10	40,3 42 45 44 41 41 41 41 41 41 41 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Meserce Nickal Plasab Chreme tand Elain AOX HYDR SCARBURES ARCA Denacco Tolisire Nyfena (certury) Edytlomalus Comeno POLYOHL GROBIEPIENYI Amedica 1204 Amedica 1204 Amedica 1204 Amedica 1204 Amedica 1204 Fine Am	PAM S C C C C C C C C C		0,02 40,000 1 44 41 41 41 41 41 41 41 41 41 41 41 41	3	3	40,3 46 42 42 40,93 419 41 41 41 41 41 41 41 41 41 41	45			<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002				40,3 42 42 410 18 41 41 41 41 41 41 41 41 41 41				49,3 45 42 42,01 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41				40 41 41 41 41 41 41 41 41 41 41 41 41 41				<0.3				<0.05 <0.08	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td><0.3 <5 <2 <2 <10</td><td>40,3 42 45 44 41 41 41 41 41 41 41 41 41</td><td><0.3</td><td><0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1</td><td><0.3 <1 <2 <6 <2 <10 <1 <1</td></p<>	<0.3 <5 <2 <2 <10	40,3 42 45 44 41 41 41 41 41 41 41 41 41	<0.3	<0.3 < <1 3 46 <2 <10 <<1 <1 <1 <1 <1	<0.3 <1 <2 <6 <2 <10 <1 <1
Meserce Nikela Plench Ottome tand Dain Control tand Dain Control Dencino Dencino Tolkino Dencino Tolkino Dencino Tolkino Denci	PASS S C		0,02	3	3	40,3 46 42 40,93 419 41 41 41 41 41 40,02 40,02 40,02 40,02 40,03 40,05 40,05				<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02				40,3 47 42 41 41 41 41 41 41 41 41 41 40,02 40,02 40,02 40,02 40,02 40,02				40,3 45 42 42,01 31 41 41 41 41 41 41 41 41 40,02				410 41 41 41 41 41 41 41 41 41 41 41 41 41				403 42 42 42 42 41 41 41 41 41				<0.03 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td>40,5 42 42 42 410 450</td><td>40,3 45 42 45 44 41 41 41 41 41 41 41 41 41 41 41</td><td>40,3 51 42 43 42 51 61 61 61 61 61 61 61 61 61 6</td><td><0.3</td><td><0.3 <1 <2 <6 <2 <6 <2 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1</td></p<>	40,5 42 42 42 410 450	40,3 45 42 45 44 41 41 41 41 41 41 41 41 41 41 41	40,3 51 42 43 42 51 61 61 61 61 61 61 61 61 61 6	<0.3	<0.3 <1 <2 <6 <2 <6 <2 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Marcure Marcur	1946 5 1 1 1 1 1 1 1 1 1		0,02	3	3	40,00 40,00 41,00 41,00 41,00 41,00 40,00 40,00 40,00 40,00 40,00 40,00 40,00 40,00 40,00				<0.3 <6 <2 <20 <50 <10 <10 <41 <41 <41 <41 <40.02 <60.02 <60.02 <60.02 <60.02 <60.02 <60.02 <60.02 <60.02 <60.02 <60.02 <60.02 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.03 <60.0				40,3 42 42 42 410 16 41 41 41 41 41 41 41 41 40,02				49,3 45 42 42,01 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41				40 41 41 41 41 41 41 41 41 41 41 41 41 41		1		<0.3				<0.05 <0.08	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td>40,5 42 42 42 410 450</td><td>40,3 42 45 44 41 41 41 41 41 41 41 41 41</td><td>40,3 51 42 43 42 51 61 61 61 61 61 61 61 61 61 6</td><td><0.3</td><td><0.3 <1 <2 <6 <2 <6 <2 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1</td></p<>	40,5 42 42 42 410 450	40,3 42 45 44 41 41 41 41 41 41 41 41 41	40,3 51 42 43 42 51 61 61 61 61 61 61 61 61 61 6	<0.3	<0.3 <1 <2 <6 <2 <6 <2 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Meserce Nikela Plench Ottome tand Dain Control tand Dain Control Dencino Dencino Tolkino Dencino Tolkino Dencino Tolkino Denci	PASS S C		0,02	3	3	40,3 46 42 40,61 410 41 41 41 41 41 41 41 41 41 41	-			<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02				40,3 47 42 41 41 41 41 41 41 41 41 41 40,02 40,02 40,02 40,02 40,02 40,02				40,3 45 42 42,01 31 41 41 41 41 41 41 41 41 40,02				410 41 41 41 41 41 41 41 41 41 41 41 41 41				403 42 42 42 42 41 41 41 41 41				<0.03 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td>40,5 42 42 42 410 450</td><td>40,3 45 42 45 44 41 41 41 41 41 41 41 41 41 41 41</td><td>40,3 51 62 63 64 61 61 61 61</td><td><0.3</td><td><0.3 <1 <2 <6 <2 <6 <2 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1</td></p<>	40,5 42 42 42 410 450	40,3 45 42 45 44 41 41 41 41 41 41 41 41 41 41 41	40,3 51 62 63 64 61 61 61 61	<0.3	<0.3 <1 <2 <6 <2 <6 <2 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Mescure Noked Pleneth Noked Pleneth Chreme taind Blain Desaces Tobinite De	DAM		0,02	3	40,03 44 42 42 410 	40,33 46 42 42 410 410 410 410 410 410 410 410	4			40.3 45 45 42 42 42 43 41 42 43 43 45 46 4				40,3 45 42 410 18 41 41 41 41 41 41 40,02 40,0				40,3 45 42 42,01 31 41 41 41 41 41 41 41 41 40,02				410 41 41 41 41 41 41 41 41 41 41 41 41 41)			403 43 42 42 42 42 41 41 41 41 41				<0.03 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	40,3 48 42 42 410 400 41 41 41 41 41 41 41 41 41 41 41 42 43 44 45 46 <p< td=""><td>40,3 42 42 40 450 450</td><td>40,3 45 42 45 44 41 41 41 41 41 41 41 41 41 41 41</td><td>40,3 41 42 45 42 41 41 41 41 41 41 41 41 41 41</td><td>40,3 41 3 45 42 42 41 41 41 41 41</td><td>40.3 <1 <2 <6 <42 <46 <42 <410 <61 <41 <41 <61 <41 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <</td></p<>	40,3 42 42 40 450 450	40,3 45 42 45 44 41 41 41 41 41 41 41 41 41 41 41	40,3 41 42 45 42 41 41 41 41 41 41 41 41 41 41	40,3 41 3 45 42 42 41 41 41 41 41	40.3 <1 <2 <6 <42 <46 <42 <410 <61 <41 <41 <61 <41 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <61 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <62 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <64 <

J∢ = . wou oppiec

Préévanent, Source du MO	JLINAP	APIER	Ţ	,	,	1		·								ŗ ·	ı	y
		née:	2014		2015	1		016		1017	<u> </u>	018	;	2019		020		021
		NORME		2/1	19/8	22/12	8/3	1469	29/3		29/3	6/11	7/3	30/9	29/5	1/10	17/2	30/9
BACTERIOLOGIE			1							4-14	- In				2.00	1 110	 	
Culifornes Totaux	ar 100 ml	2000	32	38	<1	>100	<30	<1	<1	30	9	<1	<1	- 1	llialble	ব	Illisible	<1
Culifornos Thermetolérants	a/100 ml	Absence	20	<1	<1	>20	<30	<1	4	- 41	7	<1	<1		illisible	न	Illisible	<1
Sinspincoques Pécaux	n/100 ml		1	1	11	41	<30	*1	8	- 11	13	<1	1	<1	3		<1	7
Salmonellos	n/51	Absence	0	abs	ebs	Bba	aha.	ape	Rbs	abs	abs	aba.	aba		non détecté	non détecté		non détenté
ORGANIQUE		1		i	<u> </u>			ì				}			<u> </u>	 	 	
D.B.Q5	mg/1 02		<	<1	2	<1	<3	7	4	<1	<1	<1	<1	<1	- <	1,1	<t< td=""><td><1</td></t<>	<1
D.C.O	mg/1 C2		<30	<30	<30	<30	<15	430	<30	<30	<30	<0	-55_	<5	45	<6	. <6	<6
PHYSICO-CHIMIQUE	† 	 		 	┼	·	i —	i -	 	 	-	 	i			 	-	
pH à 20°C	i 	SERVERSE	7.3	7,3	7,4	7,3	7,5	7.3	7,3	7.2	7.2	7.2	7.1	7.2	7.2	7.1	7.2	7.3
Conductivité	-x87cm		664	852	658	657	650	658	667	657	651	368	658	569		608	668	687
Chlorica	mg/I	200	26.3	26.1	27.2	26.9	25	26,2	26,8	28.5	30,9	28.5	27.3		670			
Sulfatos		250	6	8	8,8	8.2	10							27.4	25	27,2	25,9	28,1
Calcium	mg/l	200	119,96	116,17	117,74	119.59	93.00	9,7	10,2	10,1	12,2	9,7	9,6	8,6	10,3	9,8	10,2	10,3
Magnésium	mg/t	50									117,60	118,57	116,98	101.00	. 98	110	100	110
Sollun	mg/l	150	10,38	9,89	10,2	10,74	9,3	11,12	10,89	11,4	10,49	10,89	11	10,1	10	12	10	10
	mg/l		11,38	11,34	11,22	12.07	10	11.88	11,08	11,89	14,23	11,67	12,03	10.7	13	1t.	- 11	10
Potiestum	mg/l	12	1,97	2,89	2,01	2	2	2,08	2,12	2,02	2,28	2,02	1,95	1.69	1,8	1.7	1,8	1,8
Potential Oxydo-Réduction	Rh	all the second s	29.67	30,16	28,22	31,01	24,37	33,6	28,95	29,04	29,55	30,03	30,12	30,53	32,45	32,27	3D,68	32,56
Outsophosphatus	mg/l		0,29	D, 15	<0,15	<0.15	_	<0,16	<0.16	<0,15	0,18	40.15	<0,15	<0,15	<0,15	<0.16	D,15	40,15
SUBSTANCES INDESIRAB	LES					i	İ			i –	 	j						
Mitrates	_mg/1	. 60	36,7	31,4	41,1	34,6	30	35	34.8	35,1	36,6	35,7	34.9	40	36,1	. 38	36,1.	37,2
Nitrites	mg/l	0,1	0,06	<0.06	<0,01	<0,D1	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0,01	<0.01	<0.01	<0.01	<0.01
Ammonium	mg/l		40,05	-0,05	<0,09	0.1	<0,1	<0,05	<0,05	<0,05	<0,05	<0,05	40,05	<0.05	<0,06	< 0.05	<0,05	<0.06
Carbone Organique Totale	mg/l		0.84	0,78	40,2	0.72	<0.5	0,55	0,6	0.51	1,1	D,58	0.59	0.37	0.45	0.38	0,82	0,47
Manganisi o total	org/i	50	<1	1,33	0.76	25,5	45	1,79	<0.5	<0.6	3.53	0.68	0.4	0.42	1.4	0.76	1,9	0,57
Cuivro	mg/l	1	<0,001	<0,0005	<0.0005	<0,0006	< 0.005	<0,0005	-0.0005	<0,0000	0,00019	0,00018	<0.00015	<0,00015	<0.0001	<0.0001	0.0001	<0.0001
Zine	mg/l	5	0,01	<0,005	<0,005	<0,005	40.05	< 0.005	< 0.006			0.0013	<0.0009	<0.0009	0.0026	0,0028	0.0011	<0.0009
Azote Kjeldahl	mg/l	_1_			ш,					ļ								
SUBSTANCES TOXIQUES	!		-		-	·		_		i –		├ ─			1	<u> </u>		
Cadminum	mail	- 5	<1	<0,2	<0.2	<0.2	<1,5	<0.2	<0,2	<0.2	0,02	0.01	0.01	10.0	<0,01	<0,01	0,02	0.01
Mercure	on/L	1	40,05	<0,06	<0.05	<0,05	40,1	<0.015	<0.015	<0,016	<0,01	<0,01	<0.01	<0,01	<0.01	<0.01	<0.01	=0.01
Niekal	. vg/	50	≺5	<2	<2	42	<10	*2	42	*2	0,6	0,7	0,3	0,6	0,6	0,5	0,5	0,6
Plomb	ug/J	50	< 5	<0,6	<0,5	√0,5	<10	<0.5	<0.5	<0.5	0,0	40.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1
Chrome total	org/1	50	46	0.71	<0.5	40,5	-5	40,5	<0.5	<0.5	0.28	0.25	<0.06					
Buln	uqt]	222	<10	41	41	¥1	<10	51	×0,0	<1				0,33	0,36	0,67	0,28	0.3
AOX	σg/I		26	21	-10	<10	<10	<10	20		-0,2	40,2	=0.2	<0.2	<0,2	<0,2	<0,2	<0,Z
/AUA	oga	800 H 800	_29		- 10	\ u	110	1 10	20	<10	28	11	11	13	<10	<10	<10	12
HYDROCARBURES AROM	ATIQUES	3						<u> </u>			· · · · · · · · · · · · · · · · · · ·				i	i		r
Benzine	pg/L		<0.2	<0,2	<0,2	<0,2	<0.5	<0,2	<0,2	<0,2	<0,2	40,2	<0.2	<0.2	-0,2	40.2	<0.2	40.2
Tolaéne	rgil		<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.6	<0,5	40,5	<0.5	<0.5	<0,5	<0,5	40.5	<0.5	40.1
Xylépe (a+m+p)	.98/1		40.2	<0.2	<0,2	<0.2	-0,0	-0,0		1,0,5	0,0		-0.0		-0,0	-0,5	~U,U	
Ethylbenzene	og/l	33.6	<0,2	<0.2	< 0.2	<0,2	<0,5	<0,2	. 40,2	<0,2	<0.2	<0.2	-0.2	<0,2	<0.2	<0.2	<0.2	<0.2
Cumene	ag/l		-,-	-,,,					- ULL	.0,2	-0.1		-5,2		1046	10,2	-0,4	79.5
POLYCHLOROBI PHENYL	4					_				į			_					
Amoldor 1260						_				-								
	∝g/]	- 0,1			_	-				-								
Ameniar 1254		0,1			\rightarrow	_		—		\vdash					L			
Anythlor 1242	og/l	0,1			_	-					.—						<u> </u>	
HYDROCARBURES POLYC	YCLIQU	ES ARO		JES														
Fisomuliène	ળદુ/ા		<0,005	<0.005	<0.005	<0,005	r0,02	<0,005	<0,005	<0,008	40,01	<0,01	<0,01	<0.01	<0,01	<0,01	<0.006	<0.005
Benzo (b) tluoranthána	øg/t		<0,005	40,008	<0.005	<0,006	+0,D2	<0.005	<0.005	40,005	<0.006	<0,005	<0,005	40,005	<0.005	<0.005	<0.006	<0.005
Benzo (k) Bunranthène	og/I		<0,005	<0,006	<0,006	<0,005	10,02	<0,005	<0,005	<0,005	<0.006	<0,005	<0,005	40.005	<0,005	<0,005	<0,006	<0,005
Benzo (a) pyréne	og/I	0,01	<0,005	<0,008	<0.006	<0,005	<0,02	<0,005	<0,005	<0.008	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005	<0.001	<0.001
Benzo (g,h,i) pêrylêne	arg/]		<0.005	*0,005	<0.005	<0,005	<0,02	<0.006	<0,005	-0,005	<0.Q05	<0,005	<0,005	<0,006	40,005	<0.006	<0.0006	<0.0006
Indéno (1,2,3-od) pyrène	αg/]		<0,005	<0,005	<0.005	<0.005	-0.02	<0.006	<0.005	-0.005	=0,005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0006	<0,0006
Somme des H.P.A (6)	∞g/]	D,2	<0,005		<0.005	<0.005				1			/	-,				
					.,		_			_								

Prélèsement: FPAC

			1 0000	6004	0000	_	Dana		01		_	-	-			Onna		_									0.000		_	2010		_	2014		_		-10					
	Ann		2030	2001		_	2003			X34	_	20				2008		⊨	20				20				2009	_	_			-	2011		!		0 2		—	2D		
	Unites	MORME	23/2	22/2	20/0	18/0	4/0	2/12	17/3	20/8	13/1	17/3	20/8	5/10	14/2	28/8	8/11	13/3	12/8	20/B	28/11	27/3	19/8	250	17/12	6/4	48	Ø/12	11/2	207	23/12	0/0	1/0	22/12	22/3	20/6	18/9	28/11	14/2	3/8	28/9	20/11
BACTERIOLOGIE			7					1													1										,											
Celiformes Totaux	11/1 00 rm]	23000	8																		1)							
Colifornios Thempotoleranta		Absorce	T					1													I																					
Straptomques Fleaux	nv100 m1	Appence								I								I			L									Щ.	L	1	L		L							Ĺ
Selmonalius	n/51	Abstrace																																								
ORGANIQUE																																										$\overline{}$
D.B.O5	JOHN OZ										Ī						į				_		Ī				ŀ		i													
D.C.O	ung/I O2	1000	146	87	152	<30	79	39	110	150	209	123	112	42	70			135	118	98	150	-64	116	_68_	100	82	- 69	07	67	. 46	167	117	52	62	161	120	108	\$3	33	33	40	86
																																				-						
PHYSICO-CHIMIQUE						L	Ĺ	1	I																																	
pHù 20°C		100000	7.8	. 8	9	7,7	7,8	7,8	8,4	8.4	7,45	8.6	7.55		7,4	7.9	₹.8	7,85	8,1	7.5	0.5		8.55	7,5	7,8	7	. 8	7.8	7,95	5.2	7,65	7.86	8.3	7,7	8.45		8.5	7 . '	7,5	7.5	. 4	7.5
Conductivité	F/S/CDI	\$1.5 NB	1049	582	593	421	553	41B	780	594	1024	1004	825	520	d42	504	502		369	BB4	2330	778	1152	701	983	920	587	885	1207	8		2580	1089	937	1884	1248	2100	1484	1047	890	710	1249
Chiones	mg/l	200																																						-		
Sulfatea	nsg/T	250																																								
Calcium	Jag/t	38238	3																						Ī									_						رتت		
Марканфия	logi	50						-																																		
Sedium	mg/i	150	1 _	l			i		L									L							_							l				$\perp \neg$				∟J		i —
Potesticim	mg/t	12	<u> </u>				L			<u> </u>																						<u>.</u>					1				'	
Patential Oxydo-Reduction	Rh					_	1		1																											$\perp =$			1			
Orthophrephates	_ spt_	30,200	8						1	i —								_			I 7											-		_			1			(7	(-	

Prélèvement: EPAC	: : : : :													
	Ann	iée: .		2014			20	15	į į		2016		2017	2018
	Unités	NORME	26/6	22/9	30/12	26/3	19/6	24/9	22/12	8/3	24/6	26/12	29/3	29/3
BACTERIOLOGIE														
Coliformes Totaux	n/100 ml						l ——							
Coliformes Thermotolérants	n/100 ml	Absence												
Streptocoques Fécaux	n/100 ml	Absence			<u> </u>									
Salmonoiles	n/5 1	Absence		L			L							
ORGANIQUE														
D.B.O5	mg/I ()2													
D.C.O	mg/I O2		64	42	45	40	50	21,2	36	39	.44	52	40	59
PHYSICO-CHIMIQUE				-				İ						
pH à 20°C		- 7.4	7,9	7,5	8	8,3	7,8	7,4	7,7	7,9	7,B	7,3	8,3	8,3
Conductivité	μS/cm		810	911	951	844	612	661	863	880	787	880	796	2080
Chloruros	mg/l	200												
Sulfatos	mg/l	250												
Calcium	mg/l													
Magnésium	,mg/l	50												
Sodium	mg/l	150												
Potassium	mg/l	12												
Potentiel Oxydo-Réduction	Rh													
Orthophosphates	mg/l													

	Prélèven	nent: Ea	ux Pl	uviale	s Bas	sin No	ord Ca	sier 8	<u></u>	r	,	·	
	Anr	iée:		2019			20	20			2021		2022
	Unités	NORME	16/1	15/7	30/9	9/1	29/5	1/10	25/11	17/2	22/7	30/9	4/1
PHYSICO-CHIMIQUE		-	-				i					<u> </u>	
pH à 20°C	1		8,8	7,9	8,8.	7,5	8,7	7,9	7,7	7,9	7,9	7,5	7,7
Carbone Organique Total	mg/l		3,5	6,6	4,7	.5	5,6	9,7	6,8	3	7	20	5,6
Matières en suspension (MES)	mg/l		6	16	4	46	-26	24	10	8	8	10	17
D,C,O	mg/1 O2	4.1	17	<5	10	18	17	33	15	<5	12	58	14
Conductivité	∞S/cm		266	197	161	309	220	149	310	239	164	246	271
PARAMETRES INDÉSIRABL	.ES			1									
Indice Hydrocarbure	mg/l		0,25	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0.1	<0.1	<0.1	<0.1

Prélèvement: Eaux Plu	ıviales B	assin Su	d Ca	sier 8	******			L					ļ	
	Anr	iée:		2019			20	20			20	21	1	2022
	Unités	NORME	16/1	15/7	30/9	9/1	29/5	1/10	25/11	17/2	13/4	22/7	30/9	4/1
PHYSICO-CHIMIQUE		ì						<u> </u>						
pH à 20°C			. 7,8	7,5	7,5	7,4	7,7	7,6	7,7	7,9		7,3	7,5	7,7
Carbone Organique Total (COT)	mg/l	26.243	7,3	16	18	18,6	16	25	14	120	48	53	36	15
Matières en suspension (MES)	mg/l		5	25	3	12	8,	78	8	21		10	7	6
D.C.O	mg/l O2		28	22	46	20	46	110	37	391	197	117	99	38
Conductivité	∝S/cm		536	372	459	469	544	877	853	2660		1060	966	672
PARAMETRES INDÉSIRABL) E\$							Ì			-		-	
Indice Hydrocarbure	mg/l		0,28	<0,1	<0,1	<0,1	<0,1	<0,1	<0.1	<0,1	<0,1	<0,1	.<0,1	<0,1

SDOMODE
Monsieur Sébastien FABRE
CETRAVAL - Route de Pont-Authou – RD 38
27800 MALLEVILLE SUR LE BEC
FRANCE

RAPPORT D'ANALYSE

Dossier N° : 191008444 Date de réception : 26/03/2019

Référence bon de commande : Marché TECH 337 - BdC N°052-2019

N° Ech	Matrice	Référence échantillon	Observations
001	Eau souterraine, de nappe phréatique	PZ9	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (1203) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX: échantillons congelés.

Température de l'air de	4.3°C	Date de réceptior	1	26/03/2019 08:30	0	
enceinte Préleveur	IRH	Début d'analyse		26/03/2019		
ate de prélèvement	25/03/2019	,		20,00,2010		
PRELEVEMENT	25/03/2010					
INCLEVENIENT			Résultat	Unité		
.SPPZ : Prélèvement d	'eau souterraine ou piézométrique + Fiche Pro	estation				
ous-traitée à un laboratoire exte Prélèvement instantané (prise	rne					
Pour un ouvrage (piézomètre),	merci de nous préciser les informations ci-dessous :					
- Diamètre de l'ouvrage - Profondeur de la nappe						
- FD T 90-523-3 PARAMETRES PF	DEALARIES					-
FANAIVIL INLO FI	NEALABLES		Résultat	Unité		
.IB98 : Pouvoir d'oxyde	oréduction (rH) Prestation réalisée par nos soins		30.95			
Potentiométrie - Potentiométri	, ,		00.00			
MICROBIOLOGIE			Résultat	Unité		
IM3D0 · Entérocogues	intestinaux (/100 ml) Prestation réalisée par nos soins	#	11	ufc/100 ml		
Numération - Filtration sur mer	•		''	ale, 100 IIII		
	formes - Escherichia coli Prestation réalisée par nos mbrane [Filtration, incubation, dénombr. colo confirmées] - NF E					
	norane (i madion, medication, denombr. colo commineco) - ivi E	-74				
ISO 9308-1						
Bactéries coliformes		#	Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli		#	Illisible Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli	ésomptive (P/A dans 1L) Prestation réalisée par nos s	#		_		
Bactéries coliformes Escherichia coli		#	Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli JMPF8 : Salmonella pr	gène - NF EN ISO 19250	#	Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog	gène - NF EN ISO 19250	#	Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli JMPF8 : Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX : Demande Chim	gène - NF EN ISO 19250 Lique en Oxygène (ST-DCO) Prestation réalisée par n	# soins #	Illisible Absence	ufc/100 ml /1 litre		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE	gène - NF EN ISO 19250 ilique en Oxygène (ST-DCO) Prestation réalisée par r-2202	# soins #	Illisible Absence Résultat	ufc/100 ml /1 litre Unité		
Bactéries coliformes Escherichia coli JMPF8 : Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX : Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu	gène - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par r -2202 be fermé - ISO 15705	# soins # nos soins NF EN *	Illisible Absence Résultat	ufc/100 ml /1 litre Unité mg O2/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu. C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1	péne - NF EN ISO 19250 ilique en Oxygène (ST-DCO) Prestation réalisée par n -2202 be fermé - ISO 15705 ilimique en oxygène (DBO5) Prestation réalisée par n -2202	# soins # nos soins NF EN *	Illisible Absence Résultat	ufc/100 ml /1 litre Unité		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu. C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée par n-2202	# soins # hos soins NF EN *	Illisible Absence Résultat <5	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Organ	péne - NF EN ISO 19250 ilique en Oxygène (ST-DCO) Prestation réalisée par n -2202 be fermé - ISO 15705 ilimique en oxygène (DBO5) Prestation réalisée par n -2202	# soins # hos soins NF EN *	Illisible Absence Résultat	ufc/100 ml /1 litre Unité mg O2/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu. C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1	péne - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par n -2202 be fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par n -2202 nique Total (COT) Prestation réalisée par nos soins NF E	# soins # hos soins NF EN *	Illisible Absence Résultat <5	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimiqu	péne - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par n -2202 be fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par n -2202 nique Total (COT) Prestation réalisée par nos soins NF E	# soins # hos soins NF EN *	Illisible Absence Résultat <5	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimiqu	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 himique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF E	# soins # hos soins NF EN *	Résultat <5 1.1	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim So/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch So/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Organ 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inter	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 himique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF E	# soins # hos soins NF EN * hos soins NF EN *	Résultat <5 1.1	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte. CN1M: Orthophospha COFRAC 1-2202	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF Ene / IR] - NF EN 1484 doréduction Prestation réalisée par nos soins me tes (PO4) Prestation réalisée par nos soins NF EN ISO/IEC	# soins # hos soins NF EN * hos soins NF EN *	Résultat <5 1.1 481	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim So/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch So/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte. CN1M: Orthophospha COFRAC 1-2202 Spectrophotométrie (UV/VIS)	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 himique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF Ene /IR] - NF EN 1484 doréduction Prestation réalisée par nos soins me tes (PO4) Prestation réalisée par nos soins NF EN ISO/IEC Méthode interne	# soins # * * * * * * * * * * * * * * * * * *	Résultat <5 1.1 481	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim So/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch So/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte. CN1M: Orthophospha 20FRAC 1-2202 Spectrophotométrie (UV/VIS) -	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF En ISO/IEC (PO4) Prestation réalisée par nos soins NF En ISO/IEC (Méthode interne)	# soins # * * * * * * * * * * * * * * * * * *	Résultat <5 1.1 481	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu. C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte. CN1M: Orthophospha COFRAC 1-2202 Spectrophotométrie (UV/VIS) - J001: Mesure du pH Pr Potentiométrie - NF EN ISO 1	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF En ISO/IEC (PO4) Prestation réalisée par nos soins NF En ISO/IEC (Méthode interne)	# *** nos soins NF EN ** nos soins NF EN * EN ISO/IEC ** 17025:2005 **	Illisible Absence Résultat <5 1.1 1.5 481 <0.15	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l mV mg PO4/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim Scollec 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch Scollec 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal Tocusion Cofrac 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha COFRAC 1-2202 Spectrophotométrie (UV/VIS) - J001: Mesure du pH Pi Potentiométrie - NF EN ISO 1	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF Ene / IR] - NF EN 1484 doréduction Prestation réalisée par nos soins NF Ene (PO4) Prestation réalisée par nos soins NF Ene (PO4) Prestation réalisée par nos soins NF EN ISO/IEC Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:2005 CO 10523	# soins # * * * * * * * * * * * * * * * * * *	Illisible Absence Résultat <5 1.1 1.5 481 <0.15	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l mV mg PO4/l Unités pH		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim So/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch So/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte. CN1M: Orthophospha COFRAC 1-2202 Spectrophotométrie (UV/VIS) - J001: Mesure du pH Potentiométrie - NF EN ISO 1 pH à T°C Température de mesure de	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 himique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF Ene /IR] - NF EN 1484 doréduction Prestation réalisée par nos soins mre tes (PO4) Prestation réalisée par nos soins NF EN ISO/IEC Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:2005 CO 0523	# *** nos soins NF EN ** nos soins NF EN * EN ISO/IEC ** 17025:2005 ** DFRAC 1-2202 **	Illisible Absence Résultat <5 1.1 1.5 481 <0.15 7.2 16.3	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l mV mg PO4/l Unités pH °C		
Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Milieu non chromog PHYSICO-CHIMIE C3VX: Demande Chim So/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch So/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 17025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte. CN1M: Orthophospha COFRAC 1-2202 Spectrophotométrie (UV/VIS) - J001: Mesure du pH Potentiométrie - NF EN ISO 1 pH à T°C Température de mesure de	nique en Oxygène (ST-DCO) Prestation réalisée par n-2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée par n-2202 nique Total (COT) Prestation réalisée par nos soins NF Ene / IR] - NF EN 1484 doréduction Prestation réalisée par nos soins NF Ene (PO4) Prestation réalisée par nos soins NF Ene (PO4) Prestation réalisée par nos soins NF EN ISO/IEC Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:2005 CO 10523	# *** nos soins NF EN ** nos soins NF EN * EN ISO/IEC ** 17025:2005 ** DFRAC 1-2202 **	Illisible Absence Résultat <5 1.1 1.5 481 <0.15	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l mV mg PO4/l Unités pH		

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

	N° ech	191008444-001	Version AR-19-IC-024621-01(05/04/2019)	Votre réf. PZ9	Page 3/6
--	--------	---------------	--	----------------	----------

ANIONS		Résultat	Unité		
IC4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	0.10	mg NO2/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			ŭ		
IC4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	8.81	mg NO3/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
ICN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	9.0	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
IC4YH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	18.1	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CATIONS		Résultat	Unité		
IX7GI : Magnésium (Mg) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 <i>ICP/MS - NF EN ISO 17294-2</i>	*	12.9	mg/l		
IX7GF: Calcium (Ca) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	192	mg/l		
IX7GG: Potassium (K) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	4.03	mg/l		
IX7GH : Sodium Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	12.5	mg/l		
IC99I: Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	0.21	mg NH4/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
METAUX		Résultat	Unité		
IXOBN : Cadmium (Cd) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 <i>ICP/MS - NF EN ISO 17294-2</i>	*	0.10	μg/l		
IXODC : Chrome (Cr) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.99	μg/l		
IXODB: Cuivre (Cu) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	6.11	μg/l		
IXOBS : Etain (Sn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.2	µg/l		
IX6S8 : Fer (Fe) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	600	µg/l		
IX6S7 : Manganèse (Mn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 <i>ICP/MS - NF EN ISO</i> 17294-2	*	106	μg/l		
IX7IS: Mercure (Hg) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.01	μg/l		
IXOBQ: Nickel (Ni) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	4.4	μg/l		

N° ech 191008444-001 Version AR-19-IC-024621-01(05/04/2019) Votre réf. PZ9				Pag	e 4/6
METAUX					
		Résultat	Unité		
IXOC2: Plomb (Pb) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/IMS - INF EN ISO 17294-2	*	2.6	μg/l		
IXOC1 : Zinc (Zn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	85.0	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN: Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	0.12	mg/l		
Chromatographie ionique - NF EN ISO 10304-1			3		
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	100	μg/l		
HYDROCARB. POLYCYCLIQUES		Résultat	Unité		
IX1UM: Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l		
IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1U6 : Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UI : Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UB: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		

N° ech	191008444-001	Version AR-19-IC-024621-01(05/04/2019)	Votre réf. PZ9	Page 5/6

HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1U7: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1U4 : Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l		
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U8 : Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
POLYCHLORO-BIPHENYLES		Résultat	Unité		
IX1F7: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
IX1F8 : PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.01	μg/l		
IX1F9: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	µg/l		
IX1FA: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FB: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FC: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FS: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
COMPOSES ORGA. VOLATILS		Résultat	Unité		
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		

19I008444-001 | Version AR-19-IC-024621-01(05/04/2019) | Votre réf PZ9 N° ech

Page 6/6

voile ici. 1 20				9 -	_
COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		
IXRAB: o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E. coli/coliformes: Résultat non interprétable - Flore interférente.

Camille Carlier

Analytical Service Manager

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que

les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

SDOMODE
Monsieur Sébastien FABRE
CETRAVAL - Route de Pont-Authou – RD 38
27800 MALLEVILLE SUR LE BEC
FRANCE

RAPPORT D'ANALYSE

Dossier N° : 191008444 Date de réception : 26/03/2019

Référence bon de commande : Marché TECH 337 - BdC N°052-2019

N° Ech	Matrice	Référence échantillon	Observations
002	Eau souterraine, de nappe phréatique	PZ10	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (1203) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX: échantillons congelés.

empérature de l'air de	4.3°C	Date de réceptio	n	26/03/2019 08:3	0	
enceinte réleveur	IRH	Début d'analyse		26/03/2019		
ate de prélèvement	25/03/2019	Dobat a analysis		20/03/2013		
·	23/03/2019					
PRELEVEMENT			Résultat	Unité		
	'eau souterraine ou piézométrique + Ficl	he Prestation				
ous-traitée à un laboratoire exte Prélèvement instantané (prise Pour un ouvrage (piézomètre), - Diamètre de l'ouvrage - Profondeur de la nappe						
- FD T 90-523-3	2541.451.50					_
PARAMETRES PF	REALABLES		Résultat	Unité		
JB98 : Pouvoir d'oxyd	oréduction (rH) Prestation réalisée par nos soins		30.92			Т
Potentiométrie - Potentiométri	• •					
MICROBIOLOGIE						
MICKOBIOLOGIL			Résultat	Unité		
JM3D0 : Entérocoques	intestinaux (/100 ml) Prestation réalisée par nos	s soins #	< 1	ufc/100 ml		
Numération - Filtration sur mei	mbrane - NF EN ISO 7899-2					
JMLLE : Bactéries coli	formes - Escherichia coli Prestation réalisée pa	ar nos soins				
Numération - Filtration sur mei ISO 9308-1	mbrane [Filtration, incubation, dénombr. colo confirmées]	- NF EN				
130 9300-1						-
Bactéries coliformes		#	Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli		#	Illisible	ufc/100 ml		
Escherichia coli	ésomptive (P/A dans 1L) Prestation réalisée pa	#				
Escherichia coli	ésomptive (P/A dans 1L) Prestation réalisée pa gène - <i>NF EN ISO 19250</i>	#	Illisible	ufc/100 ml		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo	gène - NF EN ISO 19250	#	Illisible	ufc/100 ml		
Escherichia coli JMPF8 : Salmonella pr	gène - NF EN ISO 19250	#	Illisible	ufc/100 ml		
Escherichia coli IMPF8 : Salmonella pr Détection - Milleu non chromos PHYSICO-CHIMIE	gène - NF EN ISO 19250	# r nos soins #	Illisible Absence Résultat	ufc/100 ml /1 litre Unité		
Escherichia coli IMPF8 : Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX : Demande Chim SO/IEC 17025:2005 COFRAC 1	gène - NF EN ISO 19250 ilique en Oxygène (ST-DCO) Prestation réalisé -2202	# r nos soins #	Illisible Absence	ufc/100 ml /1 litre		
Escherichia coli IMPF8 : Salmonella pr Détection - Milieu non chrono; PHYSICO-CHIMIE C3VX : Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu	gène - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705	# r nos soins # e par nos soins NF EN *	Illisible Absence Résultat	ufc/100 ml /1 litre Unité mg O2/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo, PHYSICO-CHIMIE C3VX: Demande Chim BO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1	géne - NF EN ISO 19250 ilique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 ilimique en oxygène (DBO5) Prestation réalisée -2202	# r nos soins # e par nos soins NF EN *	Illisible Absence Résultat	ufc/100 ml /1 litre Unité		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo; PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée -2202	# e par nos soins NF EN e par nos soins NF EN *	Illisible Absence Résultat	ufc/100 ml /1 litre Unité mg O2/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim 60/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch 60/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Organ	géne - NF EN ISO 19250 ilique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 ilimique en oxygène (DBO5) Prestation réalisée -2202	# e par nos soins NF EN e par nos soins NF EN *	Illisible Absence Résultat	ufc/100 ml /1 litre Unité mg O2/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo; PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 -2202	# e par nos soins NF EN e par nos soins NF EN *	Illisible Absence Résultat 14 3.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo; PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Organ 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique]	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 -2202	# e par nos soins NF EN e par nos soins NF EN *	Illisible Absence Résultat 14 3.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo; PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Organ 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique]	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisé -2202 nique Total (COT) Prestation réalisée par nos soins te /IR] - NF EN 1484 doréduction Prestation réalisée par nos soins	# e par nos soins NF EN e par nos soins NF EN *	Résultat 14 3.0 2.3	ufc/100 ml //1 litre Unité mg O2/l mg O2/l mg C/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo PHYSICO-CHIMIE C3VX: Demande Chim So/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Organ 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisé -2202 nique Total (COT) Prestation réalisée par nos soins te /IR] - NF EN 1484 doréduction Prestation réalisée par nos soins	# e par nos soins NF EN e par nos soins NF EN s NF EN ISO/IEC *	Résultat 14 3.0 2.3	ufc/100 ml //1 litre Unité mg O2/l mg O2/l mg C/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromos PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha OFRAC 1-2202	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée -2202 nique Total (COT) Prestation réalisée par nos soins re / IR] - NF EN 1484 doréduction Prestation réalisée par nos soins rme tes (PO4) Prestation réalisée par nos soins NF EN ISO	# e par nos soins NF EN e par nos soins NF EN s NF EN ISO/IEC *	Résultat 14 3.0 2.3	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milleu non chromo PHYSICO-CHIMIE C3VX: Demande Chim Sollec 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch Sollec 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha OFRAC 1-2202 Spectrophotométrie (UV/VIS)	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisé -2202 nique Total (COT) Prestation réalisée par nos soins pe /IR] - NF EN 1484 doréduction Prestation réalisée par nos soins rme tes (PO4) Prestation réalisée par nos soins NF EN ISO Méthode interne	# e par nos soins NF EN e par nos soins NF EN s NF EN ISO/IEC * O/IEC 17025:2005	Résultat 14 3.0 2.3	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milleu non chromo PHYSICO-CHIMIE C3VX: Demande Chim Sollec 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch Sollec 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha OFRAC 1-2202 Spectrophotométrie (UV/VIS)	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisé -2202 nique Total (COT) Prestation réalisée par nos soins pe /IR] - NF EN 1484 doréduction Prestation réalisée par nos soins rme tes (PO4) Prestation réalisée par nos soins NF EN ISO Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:20	# e par nos soins NF EN e par nos soins NF EN s NF EN ISO/IEC * O/IEC 17025:2005	Résultat 14 3.0 2.3	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milleu non chromo PHYSICO-CHIMIE C3VX: Demande Chim Sollec 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch Sollec 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha OFRAC 1-2202 Spectrophotométrie (UV/VIS) J001: Mesure du pH P	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisé -2202 nique Total (COT) Prestation réalisée par nos soins pe /IR] - NF EN 1484 doréduction Prestation réalisée par nos soins rme tes (PO4) Prestation réalisée par nos soins NF EN ISO Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:20	# e par nos soins NF EN e par nos soins NF EN s NF EN ISO/IEC * O/IEC 17025:2005	Résultat 14 3.0 2.3	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo, PHYSICO-CHIMIE C3VX: Demande Chim GOIEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SOIEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha OFRAC 1-2202 Spectrophotométrie (UV/VIS) J001: Mesure du pH P Potentiométrie - NF EN ISO 1	ique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée -2202 nique Total (COT) Prestation réalisée par nos soins re / IR] - NF EN 1484 doréduction Prestation réalisée par nos soins rme tes (PO4) Prestation réalisée par nos soins NF EN ISO Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:20 0523	# e par nos soins NF EN * e par nos soins NF EN * s NF EN ISO/IEC * O/IEC 17025:2005 *	Résultat 14 3.0 2.3 483 <0.15	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l mV mg PO4/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milleu non chromo, PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 7025:2005 COFRAC 1-2202 Technique (Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha OFRAC 1-2202 Spectrophotométrie (UV/VIS) J001: Mesure du pH P Potentiométrie - NF EN ISO 1 pH à T°C Température de mesure d JK98: Conductivité à :	ique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée -2202 nique Total (COT) Prestation réalisée par nos soins re / IR] - NF EN 1484 doréduction Prestation réalisée par nos soins rme tes (PO4) Prestation réalisée par nos soins NF EN ISO Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:20 0523	# e par nos soins NF EN e par nos soins NF EN s NF EN ISO/IEC * O/IEC 17025:2005 *	Illisible Absence Résultat 14 3.0 2.3 483 <0.15	ufc/100 ml //1 litre Unité mg O2/l mg O2/l mg C/l mV mg PO4/l		
Escherichia coli IMPF8: Salmonella pr Détection - Milieu non chromo PHYSICO-CHIMIE C3VX: Demande Chim SO/IEC 17025:2005 COFRAC 1 Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2005 COFRAC 1 Electrochimie - NF EN 1899-1 CBHX: Carbone Orgal 7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxy Potentiométrie - Méthode inte CN1M: Orthophospha OFRAC 1-2202 Spectrophotométrie (UV/VIS) J001: Mesure du pH P Potentiométrie - NF EN ISO 1 pH à T°C Température de mesure d	nique en Oxygène (ST-DCO) Prestation réalisé -2202 be fermé - ISO 15705 nimique en oxygène (DBO5) Prestation réalisée -2202 nique Total (COT) Prestation réalisée par nos soins re / IR] - NF EN 1484 doréduction Prestation réalisée par nos soins rme tes (PO4) Prestation réalisée par nos soins NF EN ISO Méthode interne restation réalisée par nos soins NF EN ISO/IEC 17025:20 0523 u pH 25°C Prestation réalisée par nos soins NF EN ISO/IEC 2	# e par nos soins NF EN e par nos soins NF EN s NF EN ISO/IEC * O/IEC 17025:2005 *	Illisible Absence Résultat 14 3.0 2.3 483 <0.15 7.1 16.4	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l mV mg PO4/l Unités pH °C		

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

N° ech	191008444-002	Version AR-19-IC-027271-01(17/04/2019)	Votre réf. PZ10	Page 3/6
--------	---------------	--	-----------------	----------

ANIONS					
		Résultat	Unité		
IC4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	<0.01	mg NO2/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
IC4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	17.9	mg NO3/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
ICN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	1.4	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
IC4YH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	12.7	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CATIONS					
		Résultat	Unité		
IX7GI: Magnésium (Mg) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	11.9	mg/l		
IX7GF: Calcium (Ca) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	111	mg/l		
IX7GG: Potassium (K) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	1.99	mg/l		
IX7GH: Sodium Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	162	mg/l		
IC99I: Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	0.08	mg NH4/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
METAUX					
		Résultat	Unité		
IXOBN: Cadmium (Cd) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.05	μg/l		
IXODC: Chrome (Cr) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.81	μg/l		
IXODB: Cuivre (Cu) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	17.6	μg/l		
IXOBS: Etain (Sn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.2	µg/l		
IX6S8: Fer (Fe) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	380	μg/l		
IX6S7: Manganèse (Mn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	51.9	μg/l		
IX7IS: Mercure (Hg) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.01	μg/l		
IXOBQ: Nickel (Ni) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	7.3	μg/l		

N° ech 191008444-002 Version AR-19-IC-027271-01(17/04/2019) Votre réf. PZ10				Page 4 /6	<u>6</u>
METAUX					
		Résultat	Unité		
IXOC2: Plomb (Pb) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	6.3	μg/l		
IXOC1 : Zinc (Zn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	212	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN: Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202 Flux continu - NF EN ISO 14403-2	*	<10	µg/l		
PARAMETRES INDESIRABLES		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	0.07	mg/l		
Chromatographie ionique - NF EN ISO 10304-1			-		
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	200	µg/l		
HYDROCARB. POLYCYCLIQUES		Résultat	Unité		
IX1UM: Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l		
IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1UI : Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UB: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		

N° ech	191008444-002	Version AR-19-IC-027271-01(17/04/2019)	Votre réf. PZ10	Page 5/6

HYDROCARB. POLYCYCLIQUES					
THE STATE OF SERVICE		Résultat	Unité		
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U7 : Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U4 : Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l		
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U8 : Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
POLYCHLORO-BIPHENYLES		Résultat	Unité		
IX1F7: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
IX1F8: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.01	μg/l		
IX1F9: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
IX1FA: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FB: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	µg/l		
IX1FC: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FS: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
COMPOSES ORGA. VOLATILS		Résultat	Unité		
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		

19I008444-002 | Version AR-19-IC-027271-01(17/04/2019) | Votre réf PZ10 N° ech

Page 6/6

voile lei. 1210				3	_
COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		
IXRAB: o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E. coli/coliformes : Résultat non interprétable - Flore interférente.

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que

les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

SDOMODE
Monsieur Sébastien FABRE
CETRAVAL - Route de Pont-Authou – RD 38
27800 MALLEVILLE SUR LE BEC
FRANCE

RAPPORT D'ANALYSE

Dossier N° : 191008444 Date de réception : 26/03/2019

Référence bon de commande : Marché TECH 337 - BdC N°052-2019

N° Ech	Matrice	Référence échantillon	Observations
003	Eau souterraine, de nappe phréatique	PZ8	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (1203) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX: échantillons congelés.

	ite de réception	1	26/03/2019 08:30	
'enceinte Préleveur IRH Dé	but d'analyse		26/03/2019	
Date de prélèvement 25/03/2019	but a analyse		20/03/2019	
•				
PRELEVEMENT		Résultat	Unité	
SPPZ : Prélèvement d'eau souterraine ou piézométrique + Fiche Prestation				
ious-traitée à un laboratoire externe Prélèvement instantané (prise d'un échantillon unique). Pour un ouvrage (piézomètre), merci de nous préciser les informations ci-dessous : - Diamètre de l'ouvrage				
- Profondeur de la nappe - FD T 90-523-3				
PARAMETRES PREALABLES				
		Résultat	Unité	
JB98 : Pouvoir d'oxydoréduction (rH) Prestation réalisée par nos soins		30.88		
Potentiométrie - Potentiométrie				
MICROBIOLOGIE				
		Résultat	Unité	
JM3D0 : Entérocoques intestinaux (/100 ml) Prestation réalisée par nos soins	#	16	ufc/100 ml	
Numération - Filtration sur membrane - NF EN ISO 7899-2				
JMLLE : Bactéries coliformes - Escherichia coli Prestation réalisée par nos soins				
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF EN ISO 9308-1				
Bactéries coliformes	#	Illisible	ufc/100 ml	
Escherichia coli	#	Illisible	ufc/100 ml	
JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soins	#	Absence	/1 litre	
Détection - Milieu non chromogène - NF EN ISO 19250				
PHYSICO-CHIMIE				
THTOIGG GITHMIL		Résultat	Unité	
C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos soins N	NF EN *	8	mg O2/I	
SO/IEC 17025:2005 COFRAC 1-2202 Méthode à petite échelle en tube fermé - ISO 15705				
C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins N	IE ENI *	2.3	mg O2/I	
SO/IEC 17025:2005 COFRAC 1-2202 Electrochimie - NF EN 1899-1	NF EIN	2.3	Tilg O2/I	
CBHX : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC	*	2.0	mg C/I	
.7025:2005 COFRAC 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484				
C1ZB : Potentiel d'oxydoréduction Prestation réalisée par nos soins		483	mV	
Potentiométrie - Méthode interne				
CN1M: Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:200	15 *	<0.15	mg PO4/I	
COFRAC 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne	, s	40.10	mg r O 4 //	
J001 : Mesure du pH Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-22 Potentiométrie - NF EN ISO 10523	202			
pH à T°C	*	7.1	Unités pH	
Température de mesure du pH		16.0	°C	
JK98 : Conductivité à 25°C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFI	RAC *	705	μS/cm	
-2202 Conductimétrie - NF EN 27888				
ANIONS				

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

N° ech	191008444-003	Version AR-19-IC-027272-01(17/04/2019)	Votre réf. PZ8	Page 3/6
--------	---------------	--	----------------	----------

ANIONS		Résultat	Unité		
ICAVI - Nitritae Destrict a fall for any series NE EN 100 (EG 47007 0007 007 007	*				
IC4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1		<0.01	mg NO2/I		
C4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	24.7	mg NO3/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	3.5	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
C4YH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	16.5	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CATIONS					
		Résultat	Unité		
X7GI : Magnésium (Mg) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	14.0	mg/l		
X7GF : Calcium (Ca) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	186	mg/l		
X7GG: Potassium (K) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	1.34	mg/l		
X7GH: Sodium Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	8.83	mg/l		
IC99I : Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	0.08	mg NH4/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
METAUX					
		Résultat	Unité		
XOBN : Cadmium (Cd) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.05	µg/l		
XODC : Chrome (Cr) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	1.55	µg/l		
XODB: Cuivre (Cu) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	6.02	μg/l		
XOBS: Etain (Sn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.2	μg/l		
X6S8: Fer (Fe) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	800	μg/l		
X6S7: Manganèse (Mn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	49.0	µg/l		
IX7IS: Mercure (Hg) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.01	µg/l		
IXOBQ: Nickel (Ni) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	3.3	μg/l		

ech 191008444-003 Version AR-19-IC-027272-01(17/04/2019) Votre réf. PZ8				Page 4/6
METAUX		Résultat	Unité	
(0C2 : Plomb (Pb) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	1.8	μg/l	
0C1 : Zinc (Zn) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 DFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	126	μg/l	
PARAMETRES TOXIQUES		Résultat	Unité	
COTN: Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l	
PARAMETRES INDESIRABLES		Résultat	Unité	
065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	<10.00	μg/l	
081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-2202	*	0.09	mg/l	-
Chromatographie ionique - NF EN ISO 10304-1				
6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est axeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l	
A46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est axeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	440	μg/l	
HYDROCARB. POLYCYCLIQUES		Résultat	Unité	
1UM : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN D/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l	
1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
1UE : Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
1U6 : Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
	*	<0.01	μg/l	
1UI: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993				
025:2005 COFRÀC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 025:2005 COFRAC 1-0685	*	<0.005	μg/l	
225:2005 COFRÀC 1-0685 .C/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 025:2005 COFRAC 1-0685 .C/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN D/IEC 17025:2005 COFRAC 1-0685	*	<0.005 <0.005	μg/l μg/l	
025:2005 COFRAC 1-0685	*			

N° ech	191008444-003	Version AR-19-IC-027272-01(17/04/2019)	Votre réf. PZ8	Page 5/6
--------	---------------	--	----------------	----------

Fech 191000444-003 Version AR-19-1C-021212-01(17/04/2019) Votre ref. PZ8				Page :	<u> </u>
HYDROCARB. POLYCYCLIQUES		Résultat	Unitá		
IVALIDA OL			Unité		
IX1U9: Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993		<0.01	μg/l		
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U7 : Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U4 : Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l		
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U8: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
POLYCHLORO-BIPHENYLES		Résultat	Unité		
IX1F7: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
IX1F8: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.01	μg/l		
IX1F9: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
IX1FA: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FB: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FC: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.001	μg/l		
IX1FS: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne	*	<0.005	μg/l		
COMPOSES ORGA. VOLATILS		Résultat	Unité		
IXR9W : Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 <i>HS - GC/MS - NF ISO 11423-1</i>	*	<0.2	μg/l		
IXRA6: Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		

19I008444-003 | Version AR-19-IC-027272-01(17/04/2019) | Votre réf PZ8 N° ech

Page 6/6

voile lei. 1 20					
COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAB: o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X : Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	µg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E. coli/coliformes : Résultat non interprétable - Flore interférente.

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que

les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

SDOMODE
Monsieur Sébastien FABRE
CETRAVAL - Route de Pont-Authou – RD 38
27800 MALLEVILLE SUR LE BEC
FRANCE

RAPPORT D'ANALYSE

Dossier N° : 191008445 Date de réception : 26/03/2019

Référence bon de commande : 128/2018

N° Ech	Matrice	Référence échantillon	Observations
001	Eau souterraine, de nappe phréatique	PZ8	(1201) (voir note ci-dessous)

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

 N° ech
 191008445-001
 Version AR-19-IC-029820-01(29/04/2019)
 Votre réf.
 PZ8
 Page 2/2

 Température de l'air de
 4.3°C
 Date de réception
 26/03/2019 08:30

Préleveur IRH Début d'analyse 15/04/2019

Date de prélèvement 25/03/2019

RADIOACTIVITE				
	Résultat	Unité		
RA001 : Activité alpha globale Analyse soustraitée à Eichrom Radoactivité (Bruz)	<0.06	Bq/I		
Technique [Comptage proportionnel à gaz] - NF EN ISO 10704				
RA08U: Dose Indicative (DI) estimation Analyse soustraitée à Eichrom Radoactivité (Bruz)	<0.1	mSv/année		
Calcul -				
RA002 : Activité Bêta globale Analyse soustraitée à Eichrom Radoactivité (Bruz)	<0.10	Bq/I		
Technique [Comptage proportionnel à gaz] - NF EN ISO 10704				
RA005 : Activité en Tritium Analyse soustraitée à Eichrom Radoactivité (Bruz)	<7.3	Bq/I		
Comptage par scintillation liquide (Spectroscopie) - NF ISO 13168 : 2015				

l'enceinte

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 2.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

SDOMODE
Monsieur Sébastien FABRE
CETRAVAL - Route de Pont-Authou – RD 38
27800 MALLEVILLE SUR LE BEC
FRANCE

RAPPORT D'ANALYSE

Dossier N° : 201014056 Date de réception : 06/05/2020

Référence bon de commande : Marché TECH 337 - BdC N°08-2020

N° Ech	Matrice	Référence échantillon	Observations
001	Eau souterraine, de nappe phréatique	PZ8	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (1203) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX: échantillons congelés.

empérature de l'air de	6.6°C	Date de réception	on	06/05/2020 08:00)	
enceinte réleveur	IRH	Début d'analyse	ı	06/05/2020 16:00)	
ate de prélèvement	05/05/2020	, 50				
PRELEVEMENT						
			Résultat	Unité		
	eau souterraine ou piézométrique + Fiche Prestation sous	s-traitée à				
n laboratoire externe Prélèvement instantané (prise	d'un échantillon unique).					
	, merci de nous préciser les informations ci-dessous :					
- Profondeur de la nappe - FD T 90-523-3						
PARAMETRES PI	REALABLES					
			Résultat	Unité		
JB98 : Pouvoir d'oxydor	réduction (rH) Prestation réalisée par nos soins		31.57			
Potentiométrie - Potentiométr	ie					
	S Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
Environnement France (S1) !!!ICP injection!!! -						
·	ésidus LL - GC / MS / MS Analyse soustraitée à Eurofins Hydrol	logie Est	-			
Maxeville) GC/MS/MS [par extraction L/L		-				
MICROBIOLOGIE	·					
MICKOBIOLOGIE			Résultat	Unité		
IM3D0 · Entérocoques	intestinaux (/100 ml) Prestation réalisée par nos soins	#	> 100	ufc/100 ml		
•	,		. 100	410, 100 1111		
Numération - Filtration sur me	mbrane - NF EN ISO 7899-2					
IMI I C . Deetteine enlife						
Numération - Filtration sur me	ormes - Escherichia coli Prestation réalisée par nos soins mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN					
	•	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1	•	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli	•					
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN esomptive (P/A dans 1L) Prestation réalisée par nos soins	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN SSOMPTIVE (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN SSOMPTIVE (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250	#	Illisible	ufc/100 ml /1 litre		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250	#	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX : Demande Chim BOJIEC 17025:2017 COFRAC	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN Somptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202	#	Illisible Non détecté	ufc/100 ml /1 litre		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX : Demande Chim 60/IEC 17025:2017 COFRAC	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN Esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 tible fermé - ISO 15705	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX : Demande Chim BO/IEC 17025:2017 COFRAC : Méthode à petite échelle en tu. C4L0 : Demande biochiso/IEC 17025:2017 COFRAC :	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 the fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins N 1-2202	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur mem PHYSICO-CHIMIE C3VX : Demande Chim BO/IEC 17025:2017 COFRAC : Méthode à petite échelle en tu C4L0 : Demande biochi BO/IEC 17025:2017 COFRAC : Electrochimie - NF EN ISO 56	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202 1-2202	# # NF EN *	Illisible Non détecté Résultat 15 3.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur mem PHYSICO-CHIMIE C3VX : Demande Chim BO/IEC 17025:2017 COFRAC : Méthode à petite échelle en tu C4L0 : Demande biochi BO/IEC 17025:2017 COFRAC : Electrochimie - NF EN ISO 56	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 the fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins N 1-2202	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur mem PHYSICO-CHIMIE C3VX : Demande Chim SO/IEC 17025:2017 COFRAC : Méthode à petite échelle en tu C4L0 : Demande biochi SO/IEC 17025:2017 COFRAC : Electrochimie - NF EN ISO 56 CBHX : Carbone Organ	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins le 2202 le fermé - ISO 15705 limique en oxygène (DBO5) Prestation réalisée par nos soins NT-2202 lique en Oxygène (DBO5) Prestation réalisée par nos soins NT-2202 lique en Oxygène (DBO5) Prestation réalisée par nos soins NT-2202 lique Total (COT) Prestation réalisée par nos soins NT-2202 lique Total (COT) Prestation réalisée par nos soins NT-EN ISO/IEO	# # NF EN *	Illisible Non détecté Résultat 15 3.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX: Demande Chim BO/IEC 17025:2017 COFRAC - Méthode à petite échelle en tu C4L0: Demande biochiso/IEC 17025:2017 COFRAC - Electrochimie - NF EN ISO 56 CBHX: Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique]	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins le 2202 le fermé - ISO 15705 limique en oxygène (DBO5) Prestation réalisée par nos soins NT-2202 lique en Oxygène (DBO5) Prestation réalisée par nos soins NT-2202 lique en Oxygène (DBO5) Prestation réalisée par nos soins NT-2202 lique Total (COT) Prestation réalisée par nos soins NT-2202 lique Total (COT) Prestation réalisée par nos soins NT-EN ISO/IEO	# # NF EN *	Illisible Non détecté Résultat 15 3.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX: Demande Chim BO/IEC 17025:2017 COFRAC - Méthode à petite échelle en tu C4L0: Demande biochiso/IEC 17025:2017 COFRAC - Electrochimie - NF EN ISO 56 CBHX: Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique]	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 libe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe formé - ISO 15705 imique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEO libe / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins	# # NF EN *	Illisible Non détecté Résultat 15 3.0 2.6	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX : Demande Chim BO/IEC 17025:2017 COFRAC - Méthode à petite échelle en tr. C4L0 : Demande biochi BO/IEC 17025:2017 COFRAC - Electrochimie - NF EN ISO 50 CBHX : Carbone Organ T025:2017 COFRAC 1-2202 Technique [Oxydation Chimique] C1ZB : Potentiel d'oxyd Potentiométrie - Méthode inte	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 libe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe formé - ISO 15705 imique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEO libe / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins	# # # NF EN *	Illisible Non détecté Résultat 15 3.0 2.6	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX : Demande Chim 60/IEC 17025:2017 COFRAC - Méthode à petite échelle en tu C4L0 : Demande biochi 80/IEC 17025:2017 COFRAC - Electrochimie - NF EN ISO Electrochimie - NF EN ISO Electrochimie - NF EN ISO ET TOCHEAC - CBHX : Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB : Potentiel d'oxyd Potentiométrie - Méthode interes	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins l-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation Pr	# # # NF EN *	Illisible Non détecté Résultat 15 3.0 2.6	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX : Demande Chim SO/IEC 17025:2017 COFRAC - Méthode à petite échelle en t. C4L0 : Demande biochiso/IEC 17025:2017 COFRAC - Electrochimie - NF EN ISO 56 CBHX : Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB : Potentiel d'oxyd Potentiométrie - Méthode inte CN1M : Orthophosphat COFRAC 1-2202 Spectrophotométrie (UV/VIS)	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins l-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation réalisée par nos soins Notation Prestation Pr	# # # NF EN * * C * * *	Illisible Non détecté Résultat 15 3.0 2.6	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur mem PHYSICO-CHIMIE C3VX : Demande Chim SO/IEC 17025:2017 COFRAC - Méthode à petite échelle en t. C4L0 : Demande biochiso/IEC 17025:2017 COFRAC - Electrochimie - NF EN ISO 56 CBHX : Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB : Potentiel d'oxyd Potentiométrie - Méthode inte CN1M : Orthophosphat OFRAC 1-2202 Spectrophotométrie (UV/VIS)	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 gibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 gibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 gibe for in ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC gibe / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 - Méthode interne estation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-	# # # NF EN * * C * * *	Illisible Non détecté Résultat 15 3.0 2.6	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memi PHYSICO-CHIMIE C3VX : Demande Chim SO/IEC 17025:2017 COFRAC - Méthode à petite échelle en t. C4L0 : Demande biochiso/IEC 17025:2017 COFRAC - Electrochimie - NF EN ISO 56 CBHX : Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB : Potentiel d'oxyd Potentiométrie - Méthode inte CN1M : Orthophosphat COFRAC 1-2202 Spectrophotométrie (UV/VIS) J001 : Mesure du pH Pr	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 gibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 gibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 gibe for in ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC gibe / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 - Méthode interne estation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-	# # # NF EN * * C * * *	Illisible Non détecté Résultat 15 3.0 2.6	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		

Accréditation 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

www.eurofins.fr/env

DUNGLOOD OLUMNIE				
PHYSICO-CHIMIE		Résultat	Unité	
IVOO . Canduatinité à 25°C p	*			
JK98 : Conductivité à 25°C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC -2202		737	μS/cm	
Conductimétrie - NF EN 27888				
ANIONS		Résultat	Unité	
C4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	<0.01	mg NO2/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
C4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	25.5	mg NO3/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
CN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	4.7	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
C4YH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	17.5	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			-	
CATIONS				
O/MIONO		Résultat	Unité	
SFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF N ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	1.3	mg/l	
SFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) IF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	15	mg/l	
SFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN 60/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	9.0	mg/l	
C991 : Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	<0.05	mg NH4/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
METAUX				
		Résultat	Unité	
SFE5: Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN 60/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.01	μg/l	
SFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) FEN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	45	μg/l	
SFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN SO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	3.4	μg/l	
SFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF N ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.06	μg/l	
SFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN 60/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	120	mg/l	
SFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN O/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	1.4	μg/l	
SFE2: Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN 60/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	4.6	μg/l	

Accréditation 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

μg/l

ICP/MS - NF EN ISO 17294-2

LSFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488

1.6

Page 4/6

METAUX					
		Résultat	Unité		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN	*	0.3	μg/l		

ICP/MS - NF EN ISO 17294-2

LSFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN

* 92

µg/l

ISO/IEC 17025:2017 COFRAC 1-1488

ICP/MS - NF EN ISO 17294-2

LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN

* 1.0 mg/l

LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN

* 1.0 mg/l
ISO/IEC 17025:2017 COFRAC 1-1488
ICP/MS - NF EN ISO 17294-2

PARAMETRES TOXIQUES

201014056-001 | Version AR-20-IC-043954-01(05/06/2020) | Votre réf. PZ8

Résultat Unité

ICOTN : Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202 * <10 µg/I

COTN: Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202 * <10 µg/I
Flux continu - NF EN ISO 14403-2

PARAMETRES INDESIRABLES

Résultat Unité

IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202 * <10.00 µg/l

Flux continu - NF EN ISO 14402

IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202 * 0.16 mg/l

Chromatographie ionique - NF EN ISO 10304-1

IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville)

NF EN ISO/IEC 17025:2005 COFRAC 1-0685

GC/FID [Extraction L/L] - NF EN ISO 9377-2

IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est * 250 µg/l (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Coulométrie (Adsorption, Combustion) - NF EN ISO 9562 (H 14): 2005-02

HYDROCARB. POLYCYCLIQUES

Résultat

IX1UM: Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN
ISO/IEC 17025:2005 COFRAC 1-0685
Calcul - NF EN ISO 17993

IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC
* <0.01

IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC
17025:2005 COFRAC 1-0685
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC

17025:2005 COFRAC 1-0685
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005

* COFRAC 1-0685
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

IX1UI: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC
17025:2005 COFRAC 1-0685
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC

LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685

LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

IX1UB: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993

> Accréditation 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

Unité

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

<0.01

< 0.01

< 0.01

<0.005

<0.005

<0.005

< 0.005

N° ech 201014056-001 Version AR-20-IC-043954-01(05/06/2020) Votre réf. PZ8	N° ech 201014056-0
---	--------------------

Volleter. 125				1 ago (
HYDROCARB. POLYCYCLIQUES		Résultat	Unitó		
			Unité		
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U7: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1U4: Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l		
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U8 : Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
POLYCHLORO-BIPHENYLES		Résultat	Unité		
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6J9: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	µg/l		
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	µg/l		
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	µg/l		
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		
COMPOSES ORGA. VOLATILS		Résultat	Unité		
IXR9W : Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		

N° ech **201014056-001** | Version AR-20-IC-043954-01(05/06/2020) | Votre réf. PZ8

Page 6/6

COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

A

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Les données fournies par le client ne sauraient engager la responsabilité du laboratoire.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-20-IC-043955-01 Version du : 05/06/2020 Page 1/6

Date de réception : 06/05/2020 Dossier N°: 201014056

Référence bon de commande : Marché TECH 337 - BdC N°08-2020

N° Ech	Matrice	Référence échantillon	Observations
002	Eau souterraine, de nappe phréatique	PZ9	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (1203) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX: échantillons congelés.

empérature de l'air de	6.6°C	Date de réception	on	06/05/2020 08:00)	
enceinte réleveur	IRH	Début d'analyse)	06/05/2020 16:00)	
ate de prélèvement	05/05/2020	•		00/00/2020 10:00	•	
PRELEVEMENT						
			Résultat	Unité		
	eau souterraine ou piézométrique + Fiche Prestation sous	-traitée à				
n laboratoire externe Prélèvement instantané (prise	d'un échantillon unique).					
	, merci de nous préciser les informations ci-dessous :					
- Profondeur de la nappe - FD T 90-523-3						
PARAMETRES P	REALABLES					
.,			Résultat	Unité		
JB98 : Pouvoir d'oxydo	réduction (rH) Prestation réalisée par nos soins		31.77			
Potentiométrie - Potentiomét	ie					
	S Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
Environnement France (S1) !!!ICP injection!!! -						
·	ésidus LL - GC / MS / MS Analyse soustraitée à Eurofins Hydrol	ogie Est	-			
Maxeville) GC/MS/MS [par extraction L/l		-				
	·					
MICROBIOLOGIE			Résultat	Unité		
IM2D0 + Entérocques	intentinguy (/100 ml) postation della talance and	#	20	ufc/100 ml		
JWSD0 . Enterocoques	intestinaux (/100 ml) Prestation réalisée par nos soins	#	20	uic/100 IIII		
Numération - Filtration sur me	mbrane - NF EN ISO 7899-2					
JMLLE : Bactéries colif	ormes - Escherichia coli Prestation réalisée par nos soins					
	•					
Numération - Filtration sur me ISO 9308-1	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN	"				
Numération - Filtration sur me	•	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN	#	Illisible Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli	•					
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN esomptive (P/A dans 1L) Prestation réalisée par nos soins	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN SSOMPTIVE (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8 : Salmonella pro Détection - Filtration sur mem	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN SSOMPTIVE (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250	#	Illisible	ufc/100 ml		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN Somptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins	#	Illisible Non détecté	ufc/100 ml /1 litre		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pro Détection - Filtration sur mem	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN Somptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins	#	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII C3VX : Demande Chim GO/IEC 17025:2017 COFRAC Méthode à petite échelle en tra	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN Somptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII C3VX : Demande Chim SO/IEC 17025:2017 COFRAC Méthode à petite échelle en tu C4L0 : Demande bioch SO/IEC 17025:2017 COFRAC	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins le fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins le fermé - ISO 15705	# # NF EN *	Illisible Non détecté Résultat <5	ufc/100 ml /1 litre Unité mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8 : Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII C3VX : Demande Chim SO/IEC 17025:2017 COFRAC Méthode à petite échelle en to C4L0 : Demande bioch SO/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 5	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins la la company de la company	# # NF EN *	Illisible Non détecté Résultat <5	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella production - Filtration sur mem PHYSICO-CHIMII C3VX : Demande Chim SO/IEC 17025:2017 COFRAC Méthode à petite échelle en trocalle collect 17025:2017 COFRAC Electrochimie - NF EN ISO 5 CBHX : Carbone Organ 7025:2017 COFRAC 1-2202	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins la 1-2202 la 15-1 lique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC lique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC lique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC lique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC lique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC	# # NF EN *	Illisible Non détecté Résultat <5	ufc/100 ml /1 litre Unité mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8: Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII C3VX: Demande Chim SO/IEC 17025:2017 COFRAC Méthode à petite échelle en tu C4L0: Demande bioch SO/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 5 CBHX: Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimiq	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 1be fermé - ISO 15705 1mique en oxygène (DBO5) Prestation réalisée par nos soins Nationale en oxygène (DBO5) Prestation	# # NF EN *	Illisible Non détecté Résultat <5 3.0 2.7	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8 : Salmonella properties PHYSICO-CHIMII C3VX : Demande Chim So/IEC 17025:2017 COFRAC Méthode à petite échelle en troposition (C4L0 : Demande bioch So/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 5 CBHX : Carbone Organ (C525:2017 COFRAC 1-2202 Technique [Oxydation Chimiq C1ZB : Potentiel d'oxydation Chimiq C1ZB : Potentiel d'oxydation ch	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins la 1-2202 tible fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins N I-2202 tible fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins N I-2202 tible (Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC tille / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins	# # NF EN *	Illisible Non détecté Résultat <5	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella properties PHYSICO-CHIMII C3VX : Demande Chim 60/IEC 17025:2017 COFRAC Méthode à petite échelle en troposition (C4L0 : Demande bioch 80/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 50 CBHX : Carbone Organ 7025:2017 COFRAC 1-202 Technique [Oxydation Chimiq C1ZB : Potentiel d'oxydentiométrie - Méthode interessed in 180 180 180 180 180 180 180 180 180 180	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 10be fermé - ISO 15705 10ique en oxygène (DBO5) Prestation réalisée par nos soins November 1-202 10ique en oxygène (DBO5) Prestation réalisée par nos soins November 1-202 10ique en oxygène (DBO5) Prestation réalisée par nos soins November 1-2002 10ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 10ique Total (COT) Prestation réalisée par nos soins NF EN 1484 10iréduction Prestation réalisée par nos soins	# # # NF EN * F EN *	Illisible Non détecté Résultat <5 3.0 2.7	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8 : Salmonella properties PHYSICO-CHIMII C3VX : Demande Chim So/IEC 17025:2017 COFRAC Méthode à petite échelle en troposition (C3C)	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins la 1-2202 tible fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins N I-2202 tible fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins N I-2202 tible (Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC tille / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins	# # # NF EN * F EN *	Illisible Non détecté Résultat <5 3.0 2.7	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella properties PHYSICO-CHIMII C3VX : Demande Chim 60/IEC 17025:2017 COFRAC Méthode à petite échelle en troposition (C4L0 : Demande bioch 80/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 50 CBHX : Carbone Organ 7025:2017 COFRAC 1-202 Technique [Oxydation Chimiq C1ZB : Potentiel d'oxydentiométrie - Méthode interessed in 180 180 180 180 180 180 180 180 180 180	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins l-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC lie / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins lerne les (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20	# # # NF EN * F EN *	Illisible Non détecté Résultat <5 3.0 2.7	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII C3VX : Demande Chim SO/IEC 17025:2017 COFRAC Méthode à petite échelle en tr C4L0 : Demande bioch SO/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 5 CBHX : Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimiq C1ZB : Potentiel d'oxyc Potentiométrie - Méthode inte CN1M : Orthophosphat OFRAC 1-2202 Spectrophotométrie (UV/VIS)	ique en Oxygène (ST-DCO) Prestation réalisée par nos soins l-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 libe Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC lie / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins lerne les (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20	# # # NF EN * * * * * * * * * * * * * * * * * *	Illisible Non détecté Résultat <5 3.0 2.7	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII C3VX : Demande Chim SO/IEC 17025:2017 COFRAC Méthode à petite échelle en tr C4L0 : Demande bioch SO/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 5 CBHX : Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimiq C1ZB : Potentiel d'oxyc Potentiométrie - Méthode inte CN1M : Orthophosphat OFRAC 1-2202 Spectrophotométrie (UV/VIS)	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 ibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 ibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 ibe / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins NF EN ISO/IEC irre (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 - Méthode interne estation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-	# # # NF EN * * * * * * * * * * * * * * * * * *	Illisible Non détecté Résultat <5 3.0 2.7	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur me ISO 9308-1 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pro Détection - Filtration sur mem PHYSICO-CHIMII C3VX : Demande Chim SO/IEC 17025:2017 COFRAC Méthode à petite échelle en tr C4L0 : Demande bioch SO/IEC 17025:2017 COFRAC Electrochimie - NF EN ISO 5 CBHX : Carbone Organ 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimiq C1ZB : Potentiel d'oxyc Potentiométrie - Méthode inte CN1M : Orthophosphat OFRAC 1-2202 Spectrophotométrie (UV/VIS) J001 : Mesure du pH Pr	esomptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250 ique en Oxygène (ST-DCO) Prestation réalisée par nos soins 1-2202 ibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 ibe fermé - ISO 15705 imique en oxygène (DBO5) Prestation réalisée par nos soins NI-2202 ibe / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins NF EN ISO/IEC irre (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 - Méthode interne estation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-	# # # NF EN * * * * * * * * * * * * * * * * * *	Illisible Non détecté Résultat <5 3.0 2.7	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		

N° ech 201014056-002 Version AR-20-IC-043955-01(05/06/2020) Votre réf. PZ9			Page 3/6
PHYSICO-CHIMIE			
	Résultat	Unité	
IJK98 : Conductivité à 25°C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC * 1-2202	702	μS/cm	
Conductimétrie - NF EN 27888			
ANIONS	Décultat	11.97	
IC4YI : Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	Résultat <0.01	Unité mg NO2/I	
	~0.01	ilig NO2/i	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1 IC4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202 *	18.3	mg NO3/I	
	10.5	111g 1400/1	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1 ICN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202 *	2.5	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1	2.0	ilig/i	
IC4YH : Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	12.9	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1	.2.0	9/1	
CATIONS			
O/MICHO	Résultat	Unité	
LSFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF *	1.2	mg/l	
EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2			
LSFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1)	12	mg/l	
NF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2			
LSFDI : Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN	8.9	mg/l	
ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2			
IC99I : Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	<0.05	mg NH4/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
METAUX			
	Résultat	Unité	
LSFE5 : Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * ISO/IEC 17025:2017 COFRAC 1-1488	<0.01	μg/l	
ICP/MS - NF EN ISO 17294-2			
LSFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488	25	μg/l	
ICP/MS - NF EN ISO 17294-2			
LSFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488	2.5	μg/l	
ICP/MS - NF EN ISO 17294-2			
LSFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488	0.02	μg/l	
ICP/MS - NF EN ISO 17294-2			
LSFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * ISO/IEC 17025:2017 COFRAC 1-1488	110	mg/l	
ICP/MS - NF EN ISO 17294-2			
LSFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488	0.38	μg/l	
ICP/MS - NF EN ISO 17294-2	0.0		
LSFE2 : Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN SO/IEC 17025:2017 COFRAC 1-1488	2.0	μg/l	
ICP/MS - NF EN ISO 17294-2	0.7	= n	
LSFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488	0.7	μg/l	
ICP/MS - NF EN ISO 17294-2			

N° ech	201014056-002	Version AR-20-IC-043955-01(05/06/2020)	Votre réf. PZ9	Page 4/6

METAUX					
		Résultat	Unité		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.4	μg/l		
LSFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	29	μg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.17	mg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN : Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	<10	μg/l		
Flux continu - NF EN ISO 14403-2					
PARAMETRES INDESIRABLES		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	<10.00	μg/l		
Flux continu - NF EN ISO 14402					
IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	0.14	mg/l		
Chromatographie ionique - NF EN ISO 10304-1					
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	100	μg/l		
HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
IX1UM: Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Calcul - NF EN ISO 17993	*	<0.05	μg/l		
IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*				
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993		<0.01	μg/l		
	*	<0.01	µg/l		
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*				
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	μg/l		
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U1: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	hā\l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UI: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UI: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01 <0.01 <0.01	hā\l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U1: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01 <0.01 <0.01 <0.005	hā\l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1U1: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993 IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 CC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	* * *	<0.01 <0.01 <0.01 <0.005	hā\l		

N° ech	201014056-002	Version AR-20-IC-043955-01(05/06/2020)	Votre réf. PZ9	Page 5/6
--------	---------------	--	----------------	----------

HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U7 : Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1U4: Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	µg/l		
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U8: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
POLYCHLORO-BIPHENYLES		Résultat	Unité		
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	µg/l		
IX6J9: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	µg/l		
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	µg/l		
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	µg/l		
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		
COMPOSES ORGA. VOLATILS		Résultat	Unité		
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		

Accréditation 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

www.eurofins.fr/env

N° ech **201014056-002** | Version AR-20-IC-043955-01(05/06/2020) | Votre réf. PZ9

Page 6/6

COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

A

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Les données fournies par le client ne sauraient engager la responsabilité du laboratoire.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-20-IC-043956-01 Version du : 05/06/2020 Page 1/6

Date de réception : 06/05/2020 Dossier N°: 201014056

Référence bon de commande : Marché TECH 337 - BdC N°08-2020

N° Ech	Matrice	Référence échantillon	Observations
003	Eau souterraine, de nappe phréatique	PZ10	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (1203) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX: échantillons congelés.

empérature de l'air de	6.6°C	Date de réception	on	06/05/2020 08:0	0	
enceinte réleveur	IRH	Début d'analyse		06/05/2020 16:0	0	
ate de prélèvement	05/05/2020	•		00/00/2020 10/0	•	
PRELEVEMENT						
			Résultat	Unité		
	au souterraine ou piézométrique + Fiche Prestation sous	s-traitée à				
n laboratoire externe Prélèvement instantané (prise d	d'un échantillon unique).					
	merci de nous préciser les informations ci-dessous :					
- Profondeur de la nappe - FD T 90-523-3						
PARAMETRES PR	EALABLES					
.,			Résultat	Unité		
JB98 : Pouvoir d'oxydore	éduction (rH) Prestation réalisée par nos soins		31.76			
Potentiométrie - Potentiométrie	•					
	Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
Environnement France (S1) !!!ICP injection!!! -						
·	sidus LL - GC / MS / MS Analyse soustraitée à Eurofins Hydrol	logie Est	-			
Maxeville) GC/MS/MS [par extraction L/L]		-				
	- Methode Interne					
MICROBIOLOGIE			Résultat	Unité		
IM2D0 + Entérocogues i	ptootinguy (/100 ml) produting of the formation	#	23	ufc/100 ml		
inispo . Enterocoques ii	ntestinaux (/100 ml) Prestation réalisée par nos soins	π	23	uic/100 IIII		
Numération - Filtration sur mem	ıbrane - NF EN ISO 7899-2					
JMLLE : Bactéries colifo	rmes - Escherichia coli Prestation réalisée par nos soins					
JMLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1						
JMLLE : Bactéries colifor Numération - Filtration sur mem	rmes - Escherichia coli Prestation réalisée par nos soins	#	Illisible	ufc/100 ml		
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN	#	Illisible	ufc/100 ml		
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli	rmes - Escherichia coli Prestation réalisée par nos soins					
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli	rmes - Escherichia coli Prestation réalisée par nos soins librane [Filtration, incubation, dénombr. colo confirmées] - NF EN Somptive (P/A dans 1L) Prestation réalisée par nos soins	#	Illisible	ufc/100 ml		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli MPF8: Salmonella prés	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN comptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250	#	Illisible	ufc/100 ml		
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur membra	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN comptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250	#	Illisible	ufc/100 ml		
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli MPF8: Salmonella prés Détection - Filtration sur membr PHYSICO-CHIMIE	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250	#	Illisible Non détecté	ufc/100 ml /1 litre		
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur membr	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202	#	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli MPF8: Salmonella prés Détection - Filtration sur membre PHYSICO-CHIMIE C3VX: Demande Chimic SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 e fermé - ISO 15705	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité mg O2/I		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli MPF8: Salmonella prés Détection - Filtration sur membr PHYSICO-CHIMIE C3VX: Demande Chimie SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1-	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202	# # NF EN *	Illisible Non détecté Résultat 8	ufc/100 ml /1 litre Unité		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli MPF8: Salmonella prés Détection - Filtration sur membr PHYSICO-CHIMIE C3VX: Demande Chimit SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 25-1	# # NF EN *	Illisible Non détecté Résultat 8 2.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
MLLE: Bactéries colifor Numération - Filtration sur men ISO 9308-1 Bactéries coliformes Escherichia coli MPF8: Salmonella prés Détection - Filtration sur membre PHYSICO-CHIMIE C3VX: Demande Chimie SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2202	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 25-1 que Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC	# # NF EN *	Illisible Non détecté Résultat 8	ufc/100 ml /1 litre Unité mg O2/I		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur member PHYSICO-CHIMIE C3VX: Demande Chimit GO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 202 205 207 208 209 200 200 200 200 201 201 201 201 201 202 203 204 205 207 208 208 209 209 200 200 200 200 200 201 201 201 201 201	# # NF EN *	Illisible Non détecté Résultat 8 2.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur member PHYSICO-CHIMIE C3VX: Demande Chimit GO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 25-1 que Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC	# # NF EN *	Illisible Non détecté Résultat 8 2.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur member PHYSICO-CHIMIE C3VX: Demande Chimit GO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 e grane - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins NF EN ISO/IEC 2 / IR] - NF EN 1484 préduction Prestation réalisée par nos soins	# # NF EN *	Illisible Non détecté Résultat 8 2.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur membre PHYSICO-CHIMIE C3VX: Demande Chimie SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2020; Technique [Oxydation Chimique C1ZB: Potentiel d'oxydo Potentiométrie - Méthode inter	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 e grane - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins NF EN ISO/IEC 2 / IR] - NF EN 1484 préduction Prestation réalisée par nos soins	# # # NF EN * C *	Illisible Non détecté Résultat 8 2.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur membre PHYSICO-CHIMIE C3VX: Demande Chimic SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58- CBHX: Carbone Organi 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxydo	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 2202 2 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 25-1 que Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2-/ IR] - NF EN 1484 préduction Prestation réalisée par nos soins NF EN ISO/IEC 3 (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20	# # # NF EN * C *	Illisible Non détecté Résultat 8 2.0 1.1	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur membra PHYSICO-CHIMIE C3VX: Demande Chimite SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxydo Potentiométrie - Méthode inter CN1M: Orthophosphate OFRAC 1-2202 Spectrophotométrie (UV/VIS) -	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 2202 2202 2 e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins N 2202 25-1 que Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2-/ IR] - NF EN 1484 préduction Prestation réalisée par nos soins NF EN ISO/IEC 3 (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20	# # NF EN * IF EN *	Illisible Non détecté Résultat 8 2.0 1.1	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur membra PHYSICO-CHIMIE C3VX: Demande Chimite SO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir SO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxydo Potentiométrie - Méthode inter CN1M: Orthophosphate OFRAC 1-2202 Spectrophotométrie (UV/VIS) -	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins vane - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins Novembre 12202 15-1 que Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 17-18 - NF EN 1484 18-20 Prestation Prestation réalisée par nos soins NF EN ISO/IEC 18-20 Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 Méthode interne station réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-	# # NF EN * IF EN *	Illisible Non détecté Résultat 8 2.0 1.1	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
MLLE: Bactéries colifor Numération - Filtration sur mem ISO 9308-1 Bactéries coliformes Escherichia coli IMPF8: Salmonella prés Détection - Filtration sur membre PHYSICO-CHIMIE C3VX: Demande Chimits GO/IEC 17025:2017 COFRAC 1- Méthode à petite échelle en tub C4L0: Demande biochir GO/IEC 17025:2017 COFRAC 1- Electrochimie - NF EN ISO 58: CBHX: Carbone Organi 7025:2017 COFRAC 1-2202 Technique [Oxydation Chimique C1ZB: Potentiel d'oxydo Potentiométrie - Méthode inter CN1M: Orthophosphate OFRAC 1-2202 Spectrophotométrie (UV/VIS) -	rmes - Escherichia coli Prestation réalisée par nos soins abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins vane - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins Novembre 12202 15-1 que Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 17-18 - NF EN 1484 18-20 Prestation Prestation réalisée par nos soins NF EN ISO/IEC 18-20 Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 Méthode interne station réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-	# # NF EN * IF EN *	Illisible Non détecté Résultat 8 2.0 1.1	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		

PHYSICO-CHIMIE			
THOSE OF HIVE	Résultat	Unité	
JK98 : Conductivité à 25°C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC *	640	μS/cm	
-2202 Conductimétrie - NF EN 27888			
ANIONS			
	Résultat	Unité	
C4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202 *	<0.01	mg NO2/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
C4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	18.5	mg NO3/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
CN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	2.2	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
C4YH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	13.9	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
CATIONS			
CATIONS	Résultat	Unité	
.SFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF N ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	1.5	mg/l	
SFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * IF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	14	mg/l	
SFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN 80/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	7.3	mg/l	
C99I: Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	<0.05	mg NH4/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
METAUX			
	Résultat	Unité	
SFE5: Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * SO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	<0.01	μg/l	
SFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) F EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	220	μg/l	
SFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ** SO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	10	μg/l	
SFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF N ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	0.04	μg/l	
SFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN 80/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	100	mg/l	
SFE1: Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * IO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	0.56	μg/l	
SFE2: Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * O/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	3.3	μg/l	
0FF0 PL (PL)			

Accréditation 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

μg/l

ICP/MS - NF EN ISO 17294-2

LSFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488

2.9

N° ech	201014056-003	Version AR-20-IC-043956-01(05/06/2020)	Votre réf. PZ10	Page 4/6
ME	-ΤΔΙΙΧ			

METAUX					
		Résultat	Unité		
LSFDT : Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.2	μg/l		
LSFD7 : Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	26	μg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.58	mg/l		
PARAMETRES TOXIQUES					
		Résultat	Unité		
ICOTN : Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	*	<10	μg/l		
Flux continu - NF EN ISO 14403-2					
PARAMETRES INDESIRABLES		District			
LIOOF aladia ali fasta ali		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202		<10.00	μg/l		
Flux continu - NF EN ISO 14402					
IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC 1-2202	•	0.10	mg/l		
Chromatographie ionique - NF EN ISO 10304-1					
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	120	μg/l		
HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
IX1UM : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Calcul - NF EN ISO 17993	*	<0.05	μg/l		
IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U6 : Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UI : Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l		
IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UB : Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		

N° ech	201014056-003	Version AR-20-IC-043956-01(05/06/2020)	Votre réf. PZ10	Page 5/6
--------	---------------	--	-----------------	-----------------

Version AR-20-1C-043930-01(03/06/2020) Votre réf. FZ 10			Page 3/6
HYDROCARB. POLYCYCLIQUES	Résultat	Unité	
1V1110 + Chnighno Arabara annotation à Fourfair Indiantair Fourfaire de la 1900 de la 19			
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 ** COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN * ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U7 : Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U4 : Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 **COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	μg/l	
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.05	μg/l	
IX1U5 : Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U8: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
POLYCHLORO-BIPHENYLES	Résultat	Unité	
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 ** COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 **COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6J9 : PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 **COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 **COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 **COFRAC 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
COMPOSES ORGA. VOLATILS	Résultat	Unité	
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 * COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRAA : m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	

ch **201014056-003** | Version AR-20-IC-043956-01(05/06/2020) | Votre réf. PZ10

Page 6/6

COMPOSES ORGA. VOLATILS		Résultat	Unité		
IXRAB : 0-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X : Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	µg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

A

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Les données fournies par le client ne sauraient engager la responsabilité du laboratoire.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-20-IC-090537-01 Version du : 19/10/2020 Page 1/6

Date de réception : 30/09/2020 Dossier N°: 201033606

Référence bon de commande : Marché TECH 337 - BdC N°09-2020

N° Ech	Matrice	Référence échantillon	Observations
001	Eau souterraine, de nappe phréatique	PZ8	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5: échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(179) AOX: échantillons congelés.

empérature de l'air de 7°C	Date de réception	on	30/09/2020 09:30)	
enceinte réleveur IRH	Début d'analyse		30/09/2020 13:12		
ate de prélèvement 29/09/2020	Debut a analyse	•	30/09/2020 13.12	<u> </u>	
PRELEVEMENT		Résultat	Unité		
SPPZ : Prélèvement d'eau souterraine ou piézométrique + Fiche Presta	tion sous-traitée à				
n laboratoire externe Prélèvement instantané (prise d'un échantillon unique). Pour un ouvrage (piézomètre), merci de nous préciser les informations ci-dessous : - Diamètre de l'ouvrage - Profondeur de la nappe					
- FD T 90-523-3					
PARAMETRES PREALABLES		Résultat	Unité		
JB98: Pouvoir d'oxydoréduction (rH) Prestation réalisée par nos soins		31.09	Office		
5596 . Fouvoir a oxyaoreauction (111) Prestation realisee par nos soms		31.09			
Potentiométrie - Potentiométrie					
.S3ZV: Injection ICP/MS Métaux Totaux Analyse soustraitée à Eurofins Analyses Environnement France (S1) Injection ICP -	s pour	-			
XMG3 : Injection multirésidus LL - GC / MS / MS Analyse soustraitée à Eurofir Maxeville) GC/MS/MS [par extraction L/L] - Méthode interne	ns Hydrologie Est				
MICROBIOLOGIE					
		Résultat	Unité		
JM3D0 : Entérocoques intestinaux (/100 ml) Prestation réalisée par nos soins	#	< 1	ufc/100 ml		
Numération - Filtration sur membrane - NF EN ISO 7899-2					
JMLLE : Bactéries coliformes - Escherichia coli Prestation réalisée par nos soir	ns				
JMLLE: Bactéries coliformes - Escherichia coli Prestation réalisée par nos soir Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000	EN				
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF	EN #	Illisible	ufc/100 ml		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000	EN	Illisible Illisible	ufc/100 ml		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes	EN #				
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli	EN #	Illisible	ufc/100 ml		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli IMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos sol Détection - Filtration sur membrane - NF EN ISO 19250	EN #	Illisible	ufc/100 ml		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos so	EN #	Illisible	ufc/100 ml		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli IMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos sol Détection - Filtration sur membrane - NF EN ISO 19250	# # # ins #	Illisible Non détecté	ufc/100 ml /1 litre		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soi Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par no SOIJEC 17025:2017 COFRAC ESSAIS 1-2202	######################################	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soi Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202	######################################	Illisible Non détecté Résultat 32	ufc/100 ml /1 litre Unité mg O2/l		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soi Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos soi/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soi/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN 7025:2017 COFRAC ESSAIS 1-2202	######################################	Illisible Non détecté Résultat 32	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soi Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par no BO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par not BO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB : Potentiel d'oxydoréduction Prestation réalisée par nos soins	######################################	Illisible Non détecté Résultat 32 14 3.8	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soint pétection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos sointection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos sointection de petite échelle en tube fermé - ISO 15705 C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soince 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB : Potentiel d'oxydoréduction Prestation réalisée par nos soins Potentiométrie - Méthode interne CN1M : Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC OFRAC ESSAIS 1-2202	# # # # # # # # # # # # # # # # # # #	Illisible Non détecté Résultat 32 14 3.8	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soi Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB : Potentiel d'oxydoréduction Prestation réalisée par nos soins Potentiométrie - Méthode interne CN1M : Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 1007 CERAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne	# # # # # # # # # # # # # # # # # # #	Illisible Non détecté Résultat 32 14 3.8	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soint pétection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos sointection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos sointection de petite échelle en tube fermé - ISO 15705 C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soince 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB : Potentiel d'oxydoréduction Prestation réalisée par nos soins Potentiométrie - Méthode interne CN1M : Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC OFRAC ESSAIS 1-2202	# # # # # # # # # # # # # # # # # # #	Illisible Non détecté Résultat 32 14 3.8	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] - NF ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soi Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX : Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos 30/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos 30/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB : Potentiel d'oxydoréduction Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Spectrophotométrie - Méthode interne CN1M : Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne J001 : Mesure du pH Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 CO	# # # # # # # # # # # # # # # # # # #	Illisible Non détecté Résultat 32 14 3.8	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		

PHYSICO-CHIMIE					
7 TTT 0.100 0.11111112		Résultat	Unité		
K98 : Conductivité à 25°C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC	*	729	μS/cm		Т
SSAIS 1-2202 Conductimétrie - NF EN 27888					
ANIONS					
		Résultat	Unité		
C4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	0.01	mg NO2/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
C4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	27.2	mg NO3/I		Т
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS	*	3.6	mg/l		Т
2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CAYH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	17.3	mg/l		Ť
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CATIONS					
		Résultat	Unité		
SFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF NISO/IEC 17025:2017 COFRAC ESSAIS 1-1488	*	1.4	mg/l		
ICP/MS - NF EN ISO 17294-2 SFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1)	*	14	mg/l		_
F EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2		14	ing/i		
SFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN O/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	8.7	mg/l		
C99I: Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1	*	<0.05	mg NH4/I		
METAUX					i
		Résultat	Unité		
SFE5 : Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN 60/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.01	μg/l		
SFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) FEN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	71	µg/l		
SFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN O/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	3.2	μg/l		
SFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF I ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.04	μg/l		
SFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN D/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	150	mg/l		
SFE1: Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN D/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.13	µg/l		

Accréditation ESSAIS 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

ICP/MS - NF EN ISO 17294-2

LSFE2: Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2

LSFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488

1.5

< 0.1

μg/l

μg/l

N° ech	201033606-001	Version AR-20-IC-090537-01(19/10/2020)	Votre réf. PZ8	Page 4/6

METAUX					
		Résultat	Unité		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.2	μg/l		
LSFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	64	μg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	<1.0	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN: Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES					
		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	0.15	mg/l		
Chromatographie ionique - NF EN ISO 10304-1					
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	460	μg/l		
HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
IX1UM: Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 Calcul - NF EN ISO 17993	*	<0.05	μg/l		
IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UI: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UB: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		

N° ech	201033606-001	Version AR-20-IC-090537-01(19/10/2020) Version AR-20-IC-090537-01(19/10/2020)	Page 5/6

N° ech 201033006-001 Version AR-20-IC-090337-01(19/10/2020) Votre réf. F26			Page 3/0
HYDROCARB. POLYCYCLIQUES	Résultat	Unitó	
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017	<0.01	Unité	
COFFACE CESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN * ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U7: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U4 : Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	µg/l	
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.05	μg/l	
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U8 : Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
POLYCHLORO-BIPHENYLES	Résultat	Unité	
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 ** COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6J9: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
X6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
COMPOSES ORGA. VOLATILS	Résultat	Unité	
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 * COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	

N° ech **201033606-001** | Version AR-20-IC-090537-01(19/10/2020) | Votre réf. PZ8

Page 6/6

COMPOSES ORGA. VOLATILS					_
		Résultat	Unité		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

A

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Les données fournies par le client ne sauraient engager la responsabilité du laboratoire.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

SDOMODE
Monsieur Sébastien FABRE
CETRAVAL - Route de Pont-Authou – RD 38
27800 MALLEVILLE SUR LE BEC
FRANCE

RAPPORT D'ANALYSE

Dossier N° : 201033606 Date de réception : 30/09/2020

Référence bon de commande : Marché TECH 337 - BdC N°09-2020

N° Ech	Matrice	Référence échantillon	Observations
002	Eau souterraine, de nappe phréatique	PZ9	(103) (voir note ci-dessous) (1201) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1201) L'heure de prélèvement n'étant pas renseignée, les délais de mise en analyse ont été calculés à partir d'une heure de prélèvement fixée par défaut à midi.

(179) AOX: échantillons congelés.

Température de l'air de 7°C	Date de réception	on	30/09/2020 09:30)	
enceinte réleveur IRH	Début d'analyse		30/09/2020 13:12		
	Debut a analyse	•	30/09/2020 13.12	<u> </u>	
late de prélèvement 29/09/2020					
PRELEVEMENT		Résultat	Unité		
SPPZ : Prélèvement d'eau souterraine ou piézométrique + Fiche Pr	restation sous-traitée à				
n laboratoire externe Prélèvement instantané (prise d'un échantillon unique). Pour un ouvrage (piézomètre), merci de nous préciser les informations ci-dessous : - Diamètre de l'ouvrage - Profondeur de la nappe					
- FD T 90-523-3					
PARAMETRES PREALABLES		Résultat	Unité		
JB98: Pouvoir d'oxydoréduction (rH) Prestation réalisée par nos soins		31.33			
Potentiométrie - Potentiométrie					
_S3ZV: Injection ICP/MS Métaux Totaux Analyse soustraitée à Eurofins Anal Environnement France (S1) Injection ICP -	lyses pour	-			
XMG3 : Injection multirésidus LL - GC / MS / MS Analyse soustraitée à Eu Maxeville) GC/MS/MS [par extraction L/L] - Méthode interne	ırofins Hydrologie Est	-			
MICROBIOLOGIE					
		Résultat	Unité		
JM3D0 : Entérocoques intestinaux (/100 ml) Prestation réalisée par nos soir	ns #	2	ufc/100 ml		
Numération - Filtration sur membrane - NF EN ISO 7899-2					
JMLLE : Bactéries coliformes - Escherichia coli Prestation réalisée par nos	soins				
Numération - Filtration sur membrane [Filtration, incubation, dénombr. colo confirmées] -	NE EN				
ISO 9308-1 : 2000	NF EN				
ISO 9308-1 : 2000 Bactéries coliformes	#	Illisible	ufc/100 ml		
		Illisible Illisible	ufc/100 ml ufc/100 ml		
Bactéries coliformes Escherichia coli	#				
Bactéries coliformes Escherichia coli	#	Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli JMPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos	#	Illisible Non détecté	ufc/100 ml /1 litre		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE	# # s soins #	Illisible	ufc/100 ml		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250	# # s soins #	Illisible Non détecté	ufc/100 ml /1 litre		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX: Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0: Demande biochimique en oxygène (DBO5) Prestation réalisée par	# # s soins # ar nos soins NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX: Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos 20/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0: Demande biochimique en oxygène (DBO5) Prestation réalisée par 80/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX: Carbone Organique Total (COT) Prestation réalisée par nos soins Ni	# # s soins # # ar nos soins NF EN * r nos soins NF EN *	Illisible Non détecté Résultat <5	ufc/100 ml /1 litre Unité mg O2/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX: Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos So/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0: Demande biochimique en oxygène (DBO5) Prestation réalisée par so/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX: Carbone Organique Total (COT) Prestation réalisée par nos soins Nf 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484	# # s soins # # ar nos soins NF EN * r nos soins NF EN *	Illisible Non détecté Résultat <5	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX: Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos So/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0: Demande biochimique en oxygène (DBO5) Prestation réalisée par so/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX: Carbone Organique Total (COT) Prestation réalisée par nos soins Nf 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484	# # s soins # # ar nos soins NF EN * r nos soins NF EN *	Illisible Non détecté Résultat <5 1.3	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX: Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0: Demande biochimique en oxygène (DBO5) Prestation réalisée par SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX: Carbone Organique Total (COT) Prestation réalisée par nos soins NF 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB: Potentiel d'oxydoréduction Prestation réalisée par nos soins Potentiométrie - Méthode interne CN1M: Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/III	# # s soins # ar nos soins NF EN * r nos soins NF EN * F EN ISO/IEC *	Illisible Non détecté Résultat <5 1.3	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX: Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0: Demande biochimique en oxygène (DBO5) Prestation réalisée par SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX: Carbone Organique Total (COT) Prestation réalisée par nos soins NF 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB: Potentiel d'oxydoréduction Prestation réalisée par nos soins Potentiométrie - Méthode interne CN1M: Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/II COFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne	# # # s soins # # # # # # # # # # # # # # # # # # #	Illisible Non détecté Résultat <5 1.3 1.1 495	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
Bactéries coliformes Escherichia coli JMPF8: Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos Détection - Filtration sur membrane - NF EN ISO 19250 PHYSICO-CHIMIE C3VX: Demande Chimique en Oxygène (ST-DCO) Prestation réalisée par nos SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Méthode à petite échelle en tube fermé - ISO 15705 C4L0: Demande biochimique en oxygène (DBO5) Prestation réalisée par SO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Electrochimie - NF EN ISO 5815-1 CBHX: Carbone Organique Total (COT) Prestation réalisée par nos soins NF 7025:2017 COFRAC ESSAIS 1-2202 Technique [Oxydation Chimique / IR] - NF EN 1484 C1ZB: Potentiel d'oxydoréduction Prestation réalisée par nos soins Potentiométrie - Méthode interne CN1M: Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC COFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne J001: Mesure du pH Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017	# # # s soins # # # # # # # # # # # # # # # # # # #	Illisible Non détecté Résultat <5 1.3 1.1 495	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		

ech 201033606-002 Version AR-20-IC-091680-01(20/10/2020) Votre réf. PZ9				Page 3/6
PHYSICO-CHIMIE				
		Résultat	Unité	
IJK98 : Conductivité à 25°C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Conductimétrie - NF EN 27888	*	728	μS/cm	
ANIONS		Résultat	Unité	
IC4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	<0.01	mg NO2/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
C4YJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	17.9	mg NO3/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
CN65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1	*	2.1	mg/l	
C4YH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	14.2	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
CATIONS				
		Résultat	Unité	
LSFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF NI SO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.85	mg/l	
LSFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	12	mg/l	
LSFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN SO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	8.7	mg/l	
C99I : Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1	*	<0.05	mg NH4/l	
METAUX		Résultat	Unité	
LSFE5: Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN SO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.01	μg/l	
LSFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	15	µg/l	
SFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN SO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	2.3	μg/l	
SFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF N ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.03	μg/l	
SFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN SO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	130	mg/l	
LSFE1: Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN SO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.18	μg/l	

Accréditation ESSAIS 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

ICP/MS - NF EN ISO 17294-2

LSFE2: Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2

LSFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488

1.2

0.4

μg/l

μg/l

N° ech	201033606-002	Version AR-20-IC-091680-01(20/10/2020)	Votre réf. PZ9	Page 4 /6
--------	---------------	--	----------------	------------------

METAUX					
		Résultat	Unité		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.5	μg/l		
LSFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	15	μg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	76	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN: Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES					
		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	0.11	mg/l		
Chromatographie ionique - NF EN ISO 10304-1					
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	34	μg/l		
HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
IX1UM: Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 Calcul - NF EN ISO 17993	*	<0.05	μg/l		
IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UI: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UB: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		

N° ech	201033606-002	Version AR-20-IC-091680-01(20/10/2020) Votre réf. PZ9	Page 5/6
in ecn	201033000-002	Version Art-20-10-03 1000-0 1(20/10/2020) Votre ref. F23	Page

N° ech 201033606-002 Version AR-20-1C-09 1060-01(20/10/2020) Votre rét. PZ9			Page 5/6
HYDROCARB. POLYCYCLIQUES	Résultat	Unitó	
[V1] [0 + Chn(c)no Analysis and the state of		Unité	
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN * ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U7: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U4 : Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	μg/l	
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.05	μg/l	
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U8 : Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
POLYCHLORO-BIPHENYLES	Résultat	Unité	
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6J9: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
COMPOSES ORGA. VOLATILS	Résultat	Unité	
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	µg/l	

N° ech **201033606-002** | Version AR-20-IC-091680-01(20/10/2020) | Votre réf. PZ9

Page 6/6

COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Les données fournies par le client ne sauraient engager la responsabilité du laboratoire.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-20-IC-091803-01 Version du : 20/10/2020 Page 1/6

Date de réception : 30/09/2020 Dossier N°: 201033606

Référence bon de commande : Marché TECH 337 - BdC N°09-2020

N° Ech	Matrice	Référence échantillon	Observations
003	Eau souterraine, de nappe phréatique	PZ10	(103) (voir note ci-dessous) (179) (voir note ci-dessous)

(103) DBO5 : échantillons congelés. (179) AOX : échantillons congelés.

empérature de l'air de	7°C	Date de réception	on	30/09/2020 09:30	0	
enceinte réleveur	IRH	Début d'analyse)	30/09/2020 13:1:	2	
ate de prélèvement	29/09/2020	•		00/00/2020 10:11	_	
PRELEVEMENT						
			Résultat	Unité		
	eau souterraine ou piézométrique + Fiche Prestation sous	-traitée à				
n laboratoire externe Prélèvement instantané (prise	d'un échantillon unique).					
	merci de nous préciser les informations ci-dessous :					
- Profondeur de la nappe						
- FD T 90-523-3 PARAMETRES PF	REALARLES					
TO WILLIAM TO THE	(L) (L) (DLLO		Résultat	Unité		
JB98 : Pouvoir d'oxydor	éduction (rH) Prestation réalisée par nos soins		31.62			
Potentiométrie - Potentiométrie	e					
.S3ZV : Injection ICP/MS	S Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
Environnement France (S1) Injection ICP -						
<u> </u>	sidus LL - GC / MS / MS Analyse soustraitée à Eurofins Hydrolo	ogie Est	-			
Maxeville) GC/MS/MS [par extraction L/L]						
MICROBIOLOGIE						
MICKOBIOLOGIL			Résultat	Unité		
JM3D0 : Entérocoques i	ntestinaux (/100 ml) Prestation réalisée par nos soins	#	63	ufc/100 ml		
·	,					
Numération - Filtration sur men						
NVILLE . Dacteries como	rmes - Escherichia coli Prestation réalisée par nos soins					
	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN					
ISO 9308-1 : 2000	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN	#	Illisible	ufc/100 ml		
ISO 9308-1 : 2000 Bactéries coliformes	mbrane [Filtration, incubation, dénombr. colo confirmées] - NF EN	#	Illisible	ufc/100 ml		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli		#	Illisible	ufc/100 ml		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré	somptive (P/A dans 1L) Prestation réalisée par nos soins					
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb	Somptive (P/A dans 1L) Prestation réalisée par nos soins	#	Illisible	ufc/100 ml		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré	Somptive (P/A dans 1L) Prestation réalisée par nos soins	#	Illisible Non détecté	ufc/100 ml /1 litre		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE	somptive (P/A dans 1L) Prestation réalisée par nos soins brane - NF EN ISO 19250	#	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins I	#	Illisible Non détecté	ufc/100 ml /1 litre		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi SO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochin	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 1:SSAIS 1-2202 pte fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins N	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi 60/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut	somptive (P/A dans 1L) Prestation réalisée par nos soins parene - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins l'issals 1-2202 be fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Nissals 1-2202	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité mg O2/I		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi SO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochir SO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58	somptive (P/A dans 1L) Prestation réalisée par nos soins parene - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins l'issals 1-2202 be fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Nissals 1-2202	# # NF EN *	Illisible Non détecté Résultat	ufc/100 ml /1 litre Unité mg O2/I		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi 60/IEC 17025:2017 COFRAC E Méthode à petite échelle en tul C4L0 : Demande biochir 60/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi 7025:2017 COFRAC ESSAIS 1-	somptive (P/A dans 1L) Prestation réalisée par nos soins gue en Oxygène (ST-DCO) Prestation réalisée par nos soins l' sssals 1-2202 be fermé - IsO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins N sssals 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC	# # NF EN *	Illisible Non détecté Résultat 14 4.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi SO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochim SO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi 7025:2017 COFRAC ESSAIS 1: Technique [Oxydation Chimiqu	somptive (P/A dans 1L) Prestation réalisée par nos soins parane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins lessals 1-2202 pe fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Nessals 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC -2202 e / IR] - NF EN 1484	# # NF EN *	Illisible Non détecté Résultat 14 4.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi BO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochir BO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi 7025:2017 COFRAC ESSAIS 1: Technique [Oxydation Chimique] C1ZB : Potentiel d'oxydoce	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins 1 2SSAIS 1-2202 be fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins N 2SSAIS 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2202 e / IR] - NF EN 1484 Dréduction Prestation réalisée par nos soins	# # NF EN *	Illisible Non détecté Résultat 14 4.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi GO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochin SO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi 7025:2017 COFRAC ESSAIS 1. Technique [Oxydation Chimiqu C1ZB : Potentiel d'oxyda	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins N ISSAIS 1-2202 be fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins N ISSAIS 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2202 e / IR] - NF EN 1484 Dréduction Prestation réalisée par nos soins	# # # NF EN * *	Illisible Non détecté Résultat 14 4.0 1.2	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi BO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochir BO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi 7025:2017 COFRAC ESSAIS 1: Technique [Oxydation Chimique C1ZB : Potentiel d'oxydo Potentiométrie - Méthode inter CN1M : Orthophosphate COFRAC ESSAIS 1-2202	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins l' ISSAIS 1-2202 be fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins N' ISSAIS 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2-2202 e / IR] - NF EN 1484 Oréduction Prestation réalisée par nos soins me es (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20	# # # NF EN * *	Illisible Non détecté Résultat 14 4.0	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi SO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochir SO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi T025:2017 COFRAC ESSAIS 1. Technique [Oxydation Chimique C1ZB : Potentiel d'oxydo Potentiométrie - Méthode inter CN1M : Orthophosphate COFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) -	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins Insaks 1-2202 be fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Nissaks 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2-202 e / IR] - NF EN 1484 oréduction Prestation réalisée par nos soins me es (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 Méthode interne	# # # # FEN * * * * * * * * * * * * * * * * * * *	Illisible Non détecté Résultat 14 4.0 1.2	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi SO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochir SO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi T025:2017 COFRAC ESSAIS 1. Technique [Oxydation Chimique C1ZB : Potentiel d'oxydo Potentiométrie - Méthode inter CN1M : Orthophosphate COFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) -	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins Insaks 1-2202 per fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Nissaks 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2-202 2e / IR] - NF EN 1484 oréduction Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 Méthode interne sestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC Es	# # # # FEN * * * * * * * * * * * * * * * * * * *	Illisible Non détecté Résultat 14 4.0 1.2	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		
ISO 9308-1 : 2000 Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi SO/IEC 17025:2017 COFRAC E Méthode à petite échelle en tut C4L0 : Demande biochir SO/IEC 17025:2017 COFRAC E Electrochimie - NF EN ISO 58 CBHX : Carbone Organi To25:2017 COFRAC ESSAIS 1- Technique [Oxydation Chimique C1ZB : Potentiel d'oxydation Potentiométrie - Méthode inter CN1M : Orthophosphate SOFRAC ESSAIS 1-2202 Spectrophotométrie (UV/VIS) - JUO1 : Mesure du pH Pre	somptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins Insaks 1-2202 per fermé - ISO 15705 mique en oxygène (DBO5) Prestation réalisée par nos soins Nissaks 1-2202 15-1 ique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 2-202 2e / IR] - NF EN 1484 oréduction Prestation réalisée par nos soins NF EN ISO/IEC 17025:20 Méthode interne sestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC Es	# # # # FEN * * * * * * * * * * * * * * * * * * *	Illisible Non détecté Résultat 14 4.0 1.2	ufc/100 ml /1 litre Unité mg O2/l mg O2/l mg C/l		

PHYSICO-CHIMIE			
7 77 7 57 57 111112	Résultat	Unité	
K98 : Conductivité à 25°C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC * SAIS 1-2202 Conductimétrie - NF EN 27888	640	μS/cm	
ANIONS			
ANIONO	Résultat	Unité	
* X4YI: Nitrites Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	<0.01	mg NO2/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
AYJ: Nitrates Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	18.4	mg NO3/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
N65 : Sulfates (SO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS	8.1	mg/l	
2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
24YH: Chlorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 *	14.8	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
CATIONS			
	Résultat	Unité	
SFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF N ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	1.2	mg/l	
SFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * FEN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	12	mg/l	
SFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * O/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	6.9	mg/l	
C99I : Ammonium Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS * -2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1	<0.05	mg NH4/I	
METAUX			
WEIAOA	Résultat	Unité	
SFE5 : Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * IO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	<0.01	μg/l	
SFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	130	μg/l	
SFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN O/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	7.0	μg/l	
SFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF N ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	<0.01	µg/l	
SFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * O/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	120	mg/l	
SFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * O/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	0.39	μg/l	
SFE2: Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN * D/IEC 17025:2017 COFRAC ESSAIS 1-1488 CP/MS - NF EN ISO 17294-2	1.9	μg/l	

Accréditation ESSAIS 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

μg/l

ICP/MS - NF EN ISO 17294-2

LSFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488

1.1

N° ech	201033606-003	Version AR-20-IC-091803-01(20/10/2020)	Votre réf. PZ10	Page 4/6

METAUX		Résultat	Lloitá		
			Unité		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.2	μg/l		
LSFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	14	μg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-1488 ICP/MS - NF EN ISO 17294-2	*	300	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN : Cyanures totaux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC	*	<10	μg/l		
ESSAIS 1-2202 Flux continu - NF EN ISO 14403-2					
PARAMETRES INDESIRABLES					
		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IJ081 : Fluorures Prestation réalisée par nos soins NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-2202	*	0.09	mg/l		
Chromatographie ionique - NF EN ISO 10304-1					
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo Halogénés Adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	10	μg/l		
HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
IX1UM: Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 Calcul - NF EN ISO 17993	*	<0.05	μg/l		
IX1UJ: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UE: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U6: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UI: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UP: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UA: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UC: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l		
IX1UB: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685	*	<0.005	μg/l		
LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993					

N° ech **201033606-003** | Version AR-20-IC-091803-01(20/10/2020) | Votre réf. PZ10

N° ech 201033606-003 Version AR-20-1C-09 1603-01(20/10/2020) Votre réf. PZ 10			Page 5/6
HYDROCARB. POLYCYCLIQUES	Résultat	l leité	
N/410 OL)		Unité	
IX1U9 : Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UH: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U7: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	µg/l	
IX1U4 : Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UF: Indeno (1,2,3,c,d) pyrene Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	μg/l	
IX1UD: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.05	μg/l	
IX1U5: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U8 : Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
POLYCHLORO-BIPHENYLES	Résultat	Unité	
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 ** COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6J9: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
X6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
X6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
X6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
COMPOSES ORGA. VOLATILS	Résultat	Unité	
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC * 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	

Accréditation ESSAIS 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

www.eurofins.fr/env

N° ech **201033606-003** | Version AR-20-IC-091803-01(20/10/2020) | Votre réf. PZ10

Page 6/6

COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) NF EN ISO/IEC 17025:2017 COFRAC ESSAIS 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	µg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

Audrey Vanhille Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Les données fournies par le client ne sauraient engager la responsabilité du laboratoire.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

Version du : 01/03/2021 N° de rapport d'analyse : AR-21-IC-016961-01 Page 1/6

Date de réception : 12/02/2021 Dossier N°: 211005496

Référence bon de commande : Marché TECH 337 - BdC N°12

N° Ech	Matrice	Référence échantillon	Observations
001	Eau souterraine, de nappe phréatique	PIEZO 8	(103) (voir note ci-dessous) (1203) (voir note ci-dessous)

(103) DBO5: échantillons congelés.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

empérature de l'air de	Version AR-21-IC-016961-01(01/03/2021) 4.3°C	Début d'analyse	9	12/02/2021 18:	:16	
enceinte		•	•			
réleveur	IRH			IC007579 - 01		
ate de prélèvement	11/02/2021 13:40	Nom point de p	relevement		ETRAVAL - PIEZO	
ate de réception	12/02/2021 16:51	Commune		MALLEVILLE	SUR LE BEC	
PRELEVEMENT			Résultat	Unité		
n laboratoire externe Prélèvement instantané (prise d	au souterraine ou piézométrique + Fiche F l'un échantillon unique). merci de nous préciser les informations ci-dessous :	restation sous-traitée à				
PARAMETRES PR	EALABLES					
			Résultat	Unité		
JB98 : Pouvoir d'oxydoré	eduction (rH) Prestation réalisée par nos soins		32.30			
Potentiométrie - Potentiométrie						
S3ZV : Injection ICP/MS Environnement France (S1) Injection ICP -	Métaux Totaux Analyse soustraitée à Eurofins Ana	alyses pour	-			
XHAE: Injection HAP An	alyse soustraitée à Eurofins Hydrologie Est (Maxeville)		-			
GC-MS [par extraction L/L] - M	éthode interne					
XMG3 : Injection multirés Maxeville) GC/MS/MS [par extraction L/L]	sidus LL - GC / MS / MS Analyse soustraitée à E	urofins Hydrologie Est	-			
MICROBIOLOGIE	Wethode Interne					
WICKOBIOLOGIE			Résultat	Unité		
JM3D0 : Entérocoques in	ntestinaux (/100 ml) Prestation réalisée par nos so	ins #	84	ufc/100 ml		
Numération - Filtration sur mem	brane - NF EN ISO 7899-2					
JMLLE : Bactéries colifor	mes - Escherichia coli Prestation réalisée par no	s soins				
Numération - Filtration sur mem ISO 9308-1 : 2000	brane [Filtration, incubation, dénombr. colo confirmées]	- NF EN				
Bactéries coliformes		#	Illisible	ufc/100 ml		
Escherichia coli		#	Illisible	ufc/100 ml		
JMPF8 : Salmonella prés	somptive (P/A dans 1L) Prestation réalisée par no	os soins #	Non détecté	/1 litre		
Détection - Filtration sur membr	rane - NF EN ISO 19250					
PHYSICO-CHIMIE						
TTTTOIGG GTIIMILE			Résultat	Unité		
	que en Oxygène (ST-DCO) Prestation réalisée	par nos soins COFRAC *	<5	mg O2/I		
SSAIS (portée sur www.cofrac.t Méthode à petite échelle en tub						
C4L0 : Demande biochir SSAIS (portée sur www.cofrac.1 Electrochimie - NF EN ISO 581		ar nos soins COFRAC *	<1.0	mg O2/I		
CBHX : Carbone Organio cortée sur www.cofrac.fr) 1-2202 Technique [Oxydation Chimique		COFRAC ESSAIS *	0.64	mg C/I		
C1ZB : Potentiel d'oxydo	réduction Prestation réalisée par nos soins		518	mV		
Potentiométrie - Méthode interi	ne					
	S (PO4) Prestation réalisée par nos soins	#	<0.15	mg PO4/I		
op.ioopriato						
Spectrophotométrie (UV/VIS) -						

Résultat				
	Unité			
	Office			
7.2	Unités pH			
17.4	°C			
734	μS/cm			
Résultat	Unité			
<0.01	mg NO2/I			П
24.8	mg NO3/I			_
4 9	ma/l			_
4.9	mg/i			
16.7	mg/l			
Résultat	Unité			
110	mg/l			Т
1.0	mg/l			
14	mg/l			
7.7	mg/l			
<0.05	mg NH4/I			_
Résultat	Unité			
<0.01	μg/l			
5.0	μg/l			
1.8	μg/l			
0.01	µg/l			
0.22	µg/l			
	17.4 734 Résultat <0.01 24.8 4.9 16.7 Résultat 110 1.0 14 7.7 <0.05 Résultat <0.01 5.0 1.8	17.4 °C 734 μS/cm Résultat Unité <0.01 mg NO2/I 24.8 mg NO3/I 4.9 mg/I 16.7 mg/I Résultat Unité 110 mg/I 1.0 mg/I 7.7 mg/I <0.05 mg NH4/I Résultat Unité <10.01 μg/I 1.8 μg/I 0.01 μg/I	17.4 °C 734 μS/cm Résultat Unité <0.01 mg NO2/I 24.8 mg NO3/I 4.9 mg/I 16.7 mg/I Résultat Unité 110 mg/I 1.0 mg/I 14 mg/I 7.7 mg/I <0.05 mg NH4/I Résultat Unité <10.01 μg/I 1.8 μg/I 0.01 μg/I	17.4 °C 734 μS/cm Résultat Unité <0.01 mg NO2/I 24.8 mg NO3/I 4.9 mg/I 16.7 mg/I Résultat Unité 110 mg/I 1.0 mg/I 7.7 mg/I <0.05 mg NH4/I Résultat Unité <0.01 μg/I 1.8 μg/I 0.01 μg/I 0.01 μg/I

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

N° ech 211005496-001 Version AR-21-IC-016961-01(01/03/2021) Votre réf. PIEZO 8	Page 4/6
---	----------

ech 211003436-001 Version AR-21-IC-010301-01(01/03/2021) Votre réf. FIEZO	0			Page	4/0
METAUX		Résultat	Unité		
SFE2 : Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC (SSAIS (portée sur www.cofrac.fr) 1-1488 (ICP/MS - NF EN ISO 17294-2	*	0.8	μg/l		
SFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.1	μg/l		
SFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.2	μg/l		
SFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	13	μg/l		
SFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	170	μg/l		
PARAMETRES TOXIQUES					
		Résultat	Unité		
COTN: Cyanures totaux Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) -2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES					
		Résultat	Unité		
J065 : Indice phénol Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) -2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
X6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) OFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
XA46 : Organo halogénés adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est Maxeville) Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	#	230	μg/l		
J859 : Fluorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	*	0.14	mg/l		
Potentiométrie - NF T 90-004					
HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
XHA6 : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC (SSAIS (portée sur www.cofrac.fr) 1-0685 Calcul - Méthode interne	*	<0.05	μg/l		
XGRE: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
X6RB: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
X6RJ: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville)		<0.05	μg/l		
GC/MS [par extraction L/L] - Méthode interne					
X6RN : Indeno (1,2,3-cd) Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC SSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.0006	μg/l		
X6RD: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		
		<0.01	μg/l		

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

HYDROCARB. POLYCYCLIQUES

211005496-001 | Version AR-21-IC-016961-01(01/03/2021) | Votre réf. PIEZO 8

EUROFINS HYDROLOGIE NORD SAS

Page 5/6

Résultat Unité IX6R8 : Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) < 0.005 μg/l COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne IX6RF: Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur <0.0018 μg/l www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne IX6R7: Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC <0.001 μg/l ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne IX6RR: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS <0.001 μg/l (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne IX6RG: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC < 0.005 μg/l ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne IX6RI: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 < 0.0006 μg/l GC/MS [par extraction L/L] - Méthode interne IX6RH: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC <0.005 μg/l ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne IX6RC: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée <0.01 μg/l sur www.cofrac.fr) 1-0685

GC/MS [par extraction L/L] - Méthode interne IX6RK: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) < 0.01 μg/l GC/MS [par extraction L/L] - Méthode interne IX6RP: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) < 0.01 μg/l GC/MS [par extraction L/L] - Méthode interne

POLYCHLORO-BIPHENYLES					
		Résultat	Unité		
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6J9: PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.001	μg/l		
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		

COMPOSES ORGA. VOLATILS

Résultat IXR9W : Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur <0.2 www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1

Accréditation ESSAIS (portée sur www.cofrac.fr) 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

Unité

μg/l

211005496-001 | Version AR-21-IC-016961-01(01/03/2021) | Votre réf. PIEZO 8

Page 6/6

COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAA : m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X : Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

Camille Carlier

Coordinatrice Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

Version du : 01/03/2021 N° de rapport d'analyse : AR-21-IC-016962-01 Page 1/6

Date de réception : 12/02/2021 Dossier N°: 211005496

Référence bon de commande : Marché TECH 337 - BdC N°12

N° Ech	Matrice	Référence échantillon	Observations
002	Eau souterraine, de nappe phréatique	PIEZO 9	(103) (voir note ci-dessous) (1203) (voir note ci-dessous)

(103) DBO5: échantillons congelés.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

empérature de l'air de 4.3°(C	Début d'analys	е	17/02/2020 12:	25	
enceinte réleveur IRH		Code point de	prálàvomont	10007570 01		
	2/2021 10:30	Nom point de	•	IC007579 - 01	ETRAVAL - PIEZO	
•	2/2021 10:50 2/2021 16:51	Commune	n elevellielit	MALLEVILLE S		
· ·	2/2021 10.51	Commune		WALLEVILLE	SOR LE BEC	
PRELEVEMENT			Résultat	Unité		
SPPZ: Prélèvement d'eau souterin laboratoire externe Prélèvement instantané (prise d'un échantille Pour un ouvrage (piézomètre), merci de nou - Diamètre de l'ouvrage - Profondeur de la nappe - FD T 90-523-3	raine ou piézométrique + Fiche Prestation unique). s préciser les informations ci-dessous :	on sous-traitée à				
PARAMETRES PREALAB	LES					
			Résultat	Unité		
JB98 : Pouvoir d'oxydoréduction (r	H) Prestation réalisée par nos soins		32.39			
Potentiométrie - Potentiométrie						
S3ZV : Injection ICP/MS Métaux T Environnement France (S1) Injection ICP -	Totaux Analyse soustraitée à Eurofins Analyses p	oour	-			
XHAE: Injection HAP Analyse soustra	itée à Eurofins Hydrologie Est (Maxeville)		-			
GC-MS [par extraction L/L] - Méthode intern	е					
XMG3 : Injection multirésidus LL - Maxeville) GC/MS/MS [par extraction L/L] - Méthode in	GC / MS / MS Analyse soustraitée à Eurofins terne	Hydrologie Est	-			
MICROBIOLOGIE						
MICITODIOLOGIE			Résultat	Unité		
/ /M3D0 : Entérocoques intestinaux	(/100 ml) Prestation réalisée par nos soins	#	> 100	ufc/100 ml		
Numération - Filtration sur membrane - NF B	EN ISO 7899-2					
MLLE : Bactéries coliformes - Esc	cherichia coli Prestation réalisée par nos soins					
Numération - Filtration sur membrane [Filtrat ISO 9308-1 : 2000	ion, incubation, dénombr. colo confirmées] - NF E	N				
Bactéries coliformes		#	Illisible	ufc/100 ml		
Escherichia coli		#	Illisible	ufc/100 ml		
MPF8 : Salmonella présomptive (P/A dans 1L) Prestation réalisée par nos soins	s #	Non détecté	/1 litre		
Détection - Filtration sur membrane - NF EN	ISO 19250					
PHYSICO-CHIMIE						
			Résultat	Unité		
C3VX : Demande Chimique en Ox SSAIS (portée sur www.cofrac.fr) 1-2202 Méthode à petite échelle en tube fermé - ISG	ygène (ST-DCO) Prestation réalisée par nos O 15705	soins COFRAC *	<5	mg O2/I		
C4L0 : Demande biochimique en c SSAIS (portée sur www.cofrac.fr) 1-2202 Electrochimie - NF EN ISO 5815-1	oxygène (DBO5) Prestation réalisée par nos s	soins COFRAC *	<1.0	mg O2/l		
CBHX : Carbone Organique Total of ortice sur www.cofrac.fr) 1-2202 Technique [Oxydation Chimique / IR] - NF E	(COT) Prestation réalisée par nos soins COFRA N 1484	C ESSAIS *	0.73	mg C/l		
C1ZB : Potentiel d'oxydoréduction	Prestation réalisée par nos soins		523	mV		
Detection this Matheda interes						
Potentiométrie - Méthode interne						
CN1M: Orthophosphates (PO4) Pr	restation réalisée par nos soins	#	<0.15	mg PO4/I		

N° ech	211005496-002	Version AR-21-IC-016962-01(01/03/2021)	Votre réf. PIEZO 9	Page 3/6

The section of the se			, ago ,	
PHYSICO-CHIMIE	Résultat	Unité		
IJ001 : Mesure du pH Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202		O.m.o		
Potentiométrie - NF EN ISO 10523				
pH à T°C *	7.2	Unités pH		
Température de mesure du pH	16.9	°C		
IJK98: Conductivité à 25°C Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Conductimétrie - NF EN 27888	690	μS/cm		
ANIONS	Résultat	Unité		
IC4YI: Nitrites Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	<0.01	mg NO2/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
IC4YJ: Nitrates Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 *	14.7	mg NO3/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1 ICN65: Sulfates (SO4) Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) *	3.3	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1	3.3	mg/i		
IC4YH: Chlorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 *	11.9	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
CATIONS				
	Résultat	Unité		
LSFDD : Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	110	mg/l		
LSFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	0.91	mg/l		
LSFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	11	mg/l		
LSFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	7.8	mg/l		
IC99I : Ammonium Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 *	<0.05	mg NH4/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
METAUX				
	Résultat	Unité		
LSFE5 : Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	<0.01	μg/l		
LSFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	4.6	μg/l		
LSFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC * ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	2.0	μg/l		
LSFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) ** COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	<0.01	μg/l		
LSFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	<0.05	μg/l		

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

N° ech	211005496-002	Version AR-21-IC-016962-01(01/03/2021)	Votre réf. PIEZO 9	Page 4/6
--------	---------------	--	--------------------	-----------------

ech 211003436-002 Version AR-21-1C-010302-01(01/03/2021) Votre rét. FIEZO	9			Page	4/0
METAUX		Résultat	Unité		
SFE2 : Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.4	μg/l		
SFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.1	µg/l		
SFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.6	μg/l		
SFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	20	µg/l		
SFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	26	µg/l		
PARAMETRES TOXIQUES					
		Résultat	Unité		
COTN: Cyanures totaux Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) -2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES					
		Résultat	Unité		
1065 : Indice phénol Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
K6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) OFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
XA46 : Organo halogénés adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est Maxeville) Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	#	140	μg/l		
J859 : Fluorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	*	0.13	mg/l		
Potentiométrie - NF T 90-004					
HYDROCARB. POLYCYCLIQUES					
		Résultat	Unité		
XHA6 : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC SSAIS (portée sur www.cofrac.fr) 1-0685 Calcul - Méthode interne	*	<0.05	μg/l		
XGRE: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
X6RB: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
X6RJ: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée ur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.05	μg/l		
X6RN: Indeno (1,2,3-cd) Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC SSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.0006	μg/l		
X6RD: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		
	*	<0.01	μg/l		

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

N° ech 211005496-002 Version AR-21-IC-016962-01(01/03/2021) Votre réf. PIEZO 9			Page 5/6
HYDROCARB. POLYCYCLIQUES			
	Résultat	Unité	
IX6R8 : Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
IX6RF: Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.0018	μg/l	
IX6R7 : Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6RR: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6RG: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC * ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
IX6RI : Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS * (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.0006	μg/l	
IX6RH: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC * ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
IX6RC: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l	
IX6RK: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l	
IX6RP : Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l	
POLYCHLORO-BIPHENYLES	Résultat	Unité	
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6J9 : PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	µg/l	
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
COMPOSES ORGA. VOLATILS	Résultat	Unité	
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	µg/l	

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

fax

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

ech **211005496-002** | Version AR-21-IC-016962-01(01/03/2021) | Votre réf. PIEZO 9

Page 6/6

COMPOSES ORGA. VOLATILS		Résultat	11		
		Resultat	Unité		
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAA: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X : Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

Camille Carlier

Coordinatrice Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

Version du : 09/03/2021 N° de rapport d'analyse : AR-21-IC-019902-01 Page 1/6

Date de réception : 12/02/2021 Dossier N°: 211005496

Référence bon de commande : Marché TECH 337 - BdC N°12

N° Ech	Matrice	Référence échantillon	Observations
003	Eau souterraine, de nappe phréatique	PIEZO 10	(103) (voir note ci-dessous) (1203) (voir note ci-dessous) (2243) (voir note ci-dessous)

(103) DBO5 : échantillons congelés.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(2243) DBO réalisée avec l'incubation alternative DBO2+5 (Annexe A Norme NF EN ISO 5815-1)

lempérature de l'air de	4.3°C	Début d'analys	e	12/02/2021 18:	:16	
enceinte Préleveur	IRH	Code point de	rálàvoment	10007570 01		
		-		IC007579 - 01	DETDAMAL DIEZO	
ate de prélèvement	11/02/2021 12:40	Nom point de p	reievement		CETRAVAL - PIEZO	
ate de réception	12/02/2021 16:51	Commune		MALLEVILLE S	SUR LE BEC	
PRELEVEMENT			Résultat	Unité		
n laboratoire externe Prélèvement instantané (prise d	au souterraine ou piézométrique + Fiche Prestation so d'un échantillon unique). merci de nous préciser les informations ci-dessous :	ous-traitée à				
PARAMETRES PR	REALABLES					
			Résultat	Unité		
JB98 : Pouvoir d'oxydoré	éduction (rH) Prestation réalisée par nos soins		32.37			
Potentiométrie - Potentiométrie	1					
	B Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
XHAE: Injection HAP An	alyse soustraitée à Eurofins Hydrologie Est (Maxeville)		-			
GC-MS [par extraction L/L] - M	éthode interne					
	sidus LL - GC / MS / MS Analyse soustraitée à Eurofins Hyd	Irologie Est	_			
Maxeville) GC/MS/MS [par extraction L/L]	·	nologic Est				
MICROBIOLOGIE						
			Résultat	Unité		
JM3D0 : Entérocoques ir	ntestinaux (/100 ml) Prestation réalisée par nos soins	#	27	ufc/100 ml		
Numération - Filtration sur mem	phrane - NE EN ISO 7890-2					
	rmes - Escherichia coli Prestation réalisée par nos soins					
	abrane [Filtration, incubation, dénombr. colo confirmées] - NF EN					
Bactéries coliformes		#	Illisible	ufc/100 ml		
Escherichia coli		#	Illisible	ufc/100 ml		
JMPF8 : Salmonella prés	somptive (P/A dans 1L) Prestation réalisée par nos soins	#	Non détecté	/1 litre		
Détection - Filtration sur membr						
PHYSICO-CHIMIE			Résultat	Unité		
C3\/X · Demande Chimi	que en Oxygène (ST-DCO) Prestation réalisée par nos soir	as COEPAC *	<5	mg O2/I		
		is COI NAC	-5	mg OZ/I		
SSAIS (portée sur www.cofrac.f Méthode à petite échelle en tub C4L0 : Demande biochin	e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins fr) 1-2202	s COFRAC *	<1.0	mg O2/I		
SSAIS (portée sur www.cofrac.f Méthode à petite échelle en tub C4L0: Demande biochin SSAIS (portée sur www.cofrac.f Electrochimie - NF EN ISO 581 CBHX: Carbone Organie	e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins (r) 1-2202 15-1 que Total (COT) Prestation réalisée par nos soins COFRAC ES		<1.0	mg O2/I		
SSAIS (portée sur www.cofrac.f Méthode à petite échelle en tub C4L0 : Demande biochin SSAIS (portée sur www.cofrac.f Electrochimie - NF EN ISO 581 CBHX : Carbone Organic portée sur www.cofrac.fr) 1-2202 Technique [Oxydation Chimique	e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins (r) 1-2202 15-1 que Total (COT) Prestation réalisée par nos soins COFRAC ES					
SSAIS (portée sur www.cofrac.f Méthode à petite échelle en tub C4L0 : Demande biochin SSAIS (portée sur www.cofrac.f Electrochimie - NF EN ISO 581 CBHX : Carbone Organic portée sur www.cofrac.fr) 1-2202 Technique [Oxydation Chimique	e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins right-2202 15-1 que Total (COT) Prestation réalisée par nos soins COFRAC ES 2 / IR] - NF EN 1484 préduction Prestation réalisée par nos soins		0.86	mg C/I		
SSAIS (portée sur www.cofrac.f Méthode à petite échelle en tub C4L0 : Demande biochin SSAIS (portée sur www.cofrac.f Electrochimie - NF EN ISO 581 CBHX : Carbone Organic portée sur www.cofrac.fr) 1-2202 Technique (Oxydation Chimique C1ZB : Potentiel d'oxydo Potentiométrie - Méthode intern	e fermé - ISO 15705 nique en oxygène (DBO5) Prestation réalisée par nos soins right-2202 15-1 que Total (COT) Prestation réalisée par nos soins COFRAC ES 2 / IR] - NF EN 1484 préduction Prestation réalisée par nos soins		0.86	mg C/I		

N° ech 211005496-003	Version AR-21-IC-019902-01(09/03/2021)	Votre réf. PIEZO 10	Page 3/6
----------------------	--	---------------------	----------

ech 211003496-003 Version AR-21-IC-019902-01(09/03/2021) Votre réf. F1E2O 10			Page 3	<u>/-</u>
PHYSICO-CHIMIE	Résultat	Unité		
IJ001 : Mesure du pH Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	riodanat	Office		
Potentiométrie - NF EN ISO 10523				
pH à T°C *	7.2	Unités pH		
Température de mesure du pH	16.7	°C		
IJK98 : Conductivité à 25°C Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Conductimétrie - NF EN 27888	666	μS/cm		
ANIONS	Résultat	Unité		
IC4YI: Nitrites Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	<0.01	mg NO2/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
IC4YJ: Nitrates Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	18.1	mg NO3/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1 ICN65: Sulfates (SO4) Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) *	3.7	mg/l		
1-2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1	0.1	mg/i		
IC4YH : Chlorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 *	15.2	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
CATIONS	Résultat	Unité		
LSFDD : Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	98	mg/l		
LSFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	1.4	mg/l		
LSFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	13	mg/l		
LSFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	7.3	mg/l		
IC99I : Ammonium Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 *	<0.05	mg NH4/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1				
METAUX				
	Résultat	Unité		
LSFE5: Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	<0.01	μg/l		
LSFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	2.6	μg/l		
LSFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC * ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	2.9	μg/l		
LSFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	0.01	μg/l		
LSFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) ** COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	<0.05	μg/l		

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

N° ech 211005496-003 Version AR-21-IC-019902-01(09/03/2021) Votre réf. PIEZO 10	Page 4/6
--	----------

ech 211003436-003 Version AR-21-IC-019302-01(09/03/2021) Votre réf. F1E20	10			Page	7/0
METAUX		Résultat	Unité		
SFE2 : Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488	*	0.7	μg/l		
ICP/MS - NF EN ISO 17294-2 SFE3: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC	*	<0.1	μg/l		
SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2					
SFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.2	μg/l		
SFD7: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	18	μg/l		
SFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC SSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	69	μg/l		
PARAMETRES TOXIQUES		Résultat	Linitá		
COTAL O	*		Unité		
COTN: Cyanures totaux Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) -2202 Flux continu - NF EN ISO 14403-2	•	<10	μg/l		
PARAMETRES INDESIRABLES					
		Résultat	Unité		
J065 : Indice phénol Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) -2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
X6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) OFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
XA46 : Organo halogénés adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est Maxeville) Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	#	76	μg/l		
J859 : Fluorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	*	0.12	mg/l		
Potentiométrie - NF T 90-004					
HYDROCARB. POLYCYCLIQUES		Résultat	Unité		
XHA6 : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC	*	<0.05	μg/l		
SSAIS (portée sur www.cofrac.fr) 1-0685 Calcul - Méthode interne		0.00	F-9·		
XGRE: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
X6RB: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
X6RJ: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée ur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.05	μg/l		
X6RN : Indeno (1,2,3-cd) Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC SSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.0006	μg/l		
X6RD: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

N° ech 211005496-003 Version AR-21-IC-019902-01(09/03/2021) Votre réf. PIEZO 10			Page 5/6
HYDROCARB. POLYCYCLIQUES			
	Résultat	Unité	
X6R8: Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) ** COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
IX6RF: Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.0018	μg/l	
IXGR7 : Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6RR: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6RG: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
IX6RI : Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS * (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.0006	μg/l	
IX6RH: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
IX6RC: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l	
IX6RK: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l	
IX6RP : Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l	
POLYCHLORO-BIPHENYLES	Résultat	Unité	
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	µg/l	
IX6J9 : PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.001	μg/l	
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.005	μg/l	
COMPOSES ORGA. VOLATILS	Résultat	Unité	
IXR9W: Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	<0.2	µg/l	

Eurofins Hydrologie Nord SAS Rue Maurice Caullery - ZI Douai Dorignies FR-59500 Douai tél. +33 3 27 86 95 87

fax

www.eurofins.fr/env

SAS au capital de 1 176 684 € RCS Douai 518 323 712 TVA FR 38 518 323 712 APE 7120B

211005496-003 | Version AR-21-IC-019902-01(09/03/2021) | Votre réf. PIEZO 10

Page 6/6

COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXRA6 : Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAA : m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAB : o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXR9X : Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

E.coli/coliformes: Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E.coli.

Audrey Vanhille Coordinatrice Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

Version du : 30/09/2021 N° de rapport d'analyse : AR-21-IC-105802-01 Page 1/6

Date de réception : 16/09/2021 Dossier N°: 211039896

Référence bon de commande : Marché TECH 337 - BdC N°12

N° Ech	Matrice	Référence échantillon	Observations
001	Eau souterraine, de nappe phréatique	PZ9	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) (2324) (voir note ci-dessous) (2326) (voir note ci-dessous)

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

AOX : échantillons congelés.

(2324) [Demande biochimique en oxygène (DBO5)] Les délais de mise en analyse pour ce(s) paramètre(s) sont supérieurs aux délais normatifs mais le résultat reste exploitable selon nos études de stabilité.

(2326) PO4 : filtré et acidifé à J0 ou J+1

EUROFINS HYDROLOGIE NORD SAS

empérature de l'air de	6.6°C	Date de réception	า	16/09/2021 08:3	60	
'enceinte Préleveur	IRH	Début d'analyse		16/09/2021 14:2	25	
Date de prélèvement	15/09/2021 09:50			10/00/2021 14.2	.0	
PRELEVEMENT						
T TELL V LIVILITY			Résultat	Unité		
SPPZ : Prélèvement d	'eau souterraine ou piézométrique + Fiche Prestation so	ous-traitée à				
in laboratoire externe Prélèvement instantané (prise	e d'un échantillon unique)					
), merci de nous préciser les informations ci-dessous :					
- Profondeur de la nappe						
- FD T 90-523-3 PARAMETRES P	REALABLES					
.,			Résultat	Unité		
JB98 : Pouvoir d'oxydo	réduction (rH) Prestation réalisée par nos soins		31.46			
Potentiométrie - Potentiomét	rie					
	IS Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
Environnement France (S1) Injection ICP -	,					
	nalyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ES	SSAIS *				
portée sur www.cofrac.fr) 1-06	85					
Digestion acide - NF EN ISO	15567-1 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville)					
-			-			
GC-MS [par extraction L/L] -	Méthode interne					
VM00 Linit	/ · · · · · · · · · · · · · · · · · · ·					
XMG3 : Injection multir	ÉSIGUS LL - GC / MS / MS Analyse soustraitée à Eurofins Hyd	drologie Est	-			
Maxeville) GC/MS/MS [par extraction L/l	_] - Méthode interne	drologie Est	-			
Maxeville)	_] - Méthode interne	drologie Est	- Dévelle			
Maxeville) GC/MS/MS [par extraction L/I	_] - Méthode interne		- Résultat	Unité		
Maxeville) GC/MS/MS [par extraction L/I	_] - Méthode interne	drologie Est##	- Résultat 14	Unité ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me	intestinaux (/100 ml) Prestation réalisée par nos soins					
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins					
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif	intestinaux (/100 ml) Prestation réalisée par nos soins	#				
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins	#				
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000	#	14	ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins	#	14	ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins	#	14 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 Ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins embrane - NF EN ISO 19250	#	14 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 Ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins embrane - NF EN ISO 19250	#	14 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins abrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soi	# # #	Illisible Illisible Non détecté	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 Ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins embrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soi	# # #	Illisible Illisible Non détecté Résultat	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité		
Maxeville) GC/MS/MS [par extraction L/MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim ESSAIS (portée sur www.cofra Méthode à petite échelle en t X081: Fluorures Analyse	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 Ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins embrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soi	# # # ns COFRAC *	Illisible Illisible Non détecté Résultat	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim SSAIS (portée sur www.cofra Méthode à petite échelle en t X081: Fluorures Analyse www.cofrac.fr) 1-0685	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins ebrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soi c.fr) 1-2202 ube fermé - ISO 15705	# # # ns COFRAC *	Illisible Illisible Non détecté Résultat <5	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l		
Maxeville) GC/MS/MS [par extraction L/MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim ESSAIS (portée sur www.cofra Methode à petite échelle en t X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - C C4L0: Demande bioch	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins embrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soi c.fr) 1-2202 ube fermé - ISO 15705 e soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS onductimétrie - NF EN ISO 10304-1 imique en oxygène (DBO5) Prestation réalisée par nos soins	# # # ns COFRAC * (portée sur *	Illisible Illisible Non détecté Résultat <5	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim ESSAIS (portée sur www.cofra Méthode à petite échelle en t X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - C	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins embrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soins c.fr) 1-2202 ube fermé - ISO 15705 es oustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS conductimétrie - NF EN ISO 10304-1 imique en oxygène (DBO5) Prestation réalisée par nos soins c.fr) 1-2202	# # # ns COFRAC * (portée sur *	Illisible Illisible Non détecté Résultat <5	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		
Maxeville) GC/MS/MS [par extraction L/I MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim SSAIS (portée sur www.cofra Méthode à petite échelle en t X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - C C4L0: Demande bioch SSAIS (portée sur www.cofra Electrochimie - NF EN ISO 5	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins embrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soins c.fr) 1-2202 ube fermé - ISO 15705 es oustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS conductimétrie - NF EN ISO 10304-1 imique en oxygène (DBO5) Prestation réalisée par nos soins c.fr) 1-2202	# # # ns COFRAC * (portée sur * s COFRAC *	Illisible Illisible Non détecté Résultat <5	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		
Maxeville) GC/MS/MS [par extraction L/MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim ESSAIS (portée sur www.cofra Méthode à petite échelle en t X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - C C4L0: Demande bioch ESSAIS (portée sur www.cofra Electrochimie - NF EN ISO 5 CBHX: Carbone Orgal portée sur www.cofrac.fr) 1-22	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins ebrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soins c.fr) 1-2202 ube fermé - ISO 15705 e soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS conductimétrie - NF EN ISO 10304-1 imique en oxygène (DBO5) Prestation réalisée par nos soins c.fr) 1-2202 815-1 nique Total (COT) Prestation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins cofractes et al. (COT) Prestation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins	# # # ns COFRAC * (portée sur * s COFRAC *	Illisible Illisible Non détecté Résultat <5 0.12 <1.0	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l mg O2/l		
Maxeville) GC/MS/MS [par extraction L/MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur me JMLLE: Bactéries colif Numération - Filtration sur me Bactéries coliformes Escherichia coli JMPF8: Salmonella pr Détection - Filtration sur mem PHYSICO-CHIMI C3VX: Demande Chim: SSAIS (portée sur www.cofra Méthode à petite échelle en t X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - C C4L0: Demande bioch SSAIS (portée sur www.cofra Electrochimie - NF EN ISO 5 CBHX: Carbone Orgal portée sur www.cofrac.fr) 1-22 Technique [Oxydation Chimiq	intestinaux (/100 ml) Prestation réalisée par nos soins embrane - ISO 7899-2 ormes - Escherichia coli Prestation réalisée par nos soins embrane - NF EN ISO 9308-1:2000 ésomptive (P/A dans 1L) Prestation réalisée par nos soins ebrane - NF EN ISO 19250 E nique en Oxygène (ST-DCO) Prestation réalisée par nos soins c.fr) 1-2202 ube fermé - ISO 15705 e soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS conductimétrie - NF EN ISO 10304-1 imique en oxygène (DBO5) Prestation réalisée par nos soins c.fr) 1-2202 815-1 nique Total (COT) Prestation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins cofractes et al. (COT) Prestation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins COFRAC Estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins cofrac estation réalisée par nos soins	# # # ns COFRAC * (portée sur * s COFRAC *	Illisible Illisible Non détecté Résultat <5 0.12 <1.0	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l mg O2/l		

Accréditation essais 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

SAS au capital de 1 176 684 €

PHYSICO-CHIMIE	District		
	Résultat	Unité	
* CN1M: Orthophosphates (PO4) Prestation réalisée par nos soins COFRAC ESSAIS (portée sur vw.cofrac.fr) 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne	<0.15	mg PO4/I	
001 : Mesure du pH Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202			
Potentiométrie - NF EN ISO 10523			
pHàT°C *	7.1	Unités pH	
Température de mesure du pH	21.6	°C	
K98 : Conductivité à 25°C Prestation réalisée par nos soins COFRAC ESSAIS (portée sur w.cofrac.fr) 1-2202 Conductimétrie - NF EN 27888	700	μS/cm	
ANIONS	Résultat	Unité	
* * ** ** ** ** ** ** ** ** ** ** ** **	<0.01	mg NO2/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
44YJ: Nitrates Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	16.9	mg NO3/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
N65 : Sulfates (SO4) Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) *	3.8	mg/l	
202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
4YH : Chlorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 *	12.9	mg/l	
spectrophotométrie (UV/VIS) - NF ISO 15923-1			
CATIONS			
	Résultat	Unité	
SFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) DFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	130	mg/l	
SFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) DFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	1.1	mg/l	
SFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) PFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	11	mg/l	
SFDI : Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) DFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	8.6	mg/l	
991 : Ammonium Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 * Spectrophotométrie (UV/VIS) - NF ISO 15923-1	0.05	mg NH4/I	
METAUX			
	Résultat	Unité	
FE5 : Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) FRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 CP/MS - NF EN ISO 17294-2	<0.01	µg/l	
SFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) ** FRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 CP/MS - NF EN ISO 17294-2	5.6	μg/l	
SFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC * SAIS (portée sur www.cofrac.fr) 1-1488 CP/MS - NF EN ISO 17294-2	1.7	µg/l	
SFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) ** ** ** ** ** ** ** ** **	0.03	μg/l	

N° ech **211039896-001** | Version AR-21-IC-105802-01(30/09/2021) | Votre réf. PZ9

ech 211033636-001 Version AR-21-IC-103602-01(30/09/2021) Votre réf. P29				Page	4/0
METAUX		Résultat	Unité		
LSFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488	*	0.22	µg/l		
ICP/MS - NF EN ISO 17294-2					
LSFE2: Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.7	μg/l		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.5	μg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	30	μg/l		
LS112: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	13.8	μg/l		
LS184: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.50	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN: Cyanures totaux Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES		Résultat	Unité		
IJ065: Indice phénol Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo halogénés adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	35	μg/l		
HYDROCARB. POLYCYCLIQUES		Résultat	Unité		
IXHA6 : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 Calcul - Méthode interne	*	0.007	μg/l		
IX6RE: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	0.002	μg/l		
IX6RB: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	0.002	μg/l		
IX6RJ: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.05	µg/l		
IX6RN: Indeno (1,2,3-cd) Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	0.0010	μg/l		
IX6RD: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.005	µg/l		
IX6RA: Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.01	μg/l		

N° ech	211039896-001	Version AR-21-IC-105802-01(30/09/2021)	Votre réf. PZ9	Page 5/6
--------	---------------	--	----------------	----------

				Page	// U
	Résultat	Unité			
*	<0.005	μg/l			
*	<0.0018	μg/l			
*	<0.001	μg/l			
*	0.001	μg/l			
*	<0.005	μg/l			
*	0.0010	μg/l			
*	<0.005	μg/l			
*	<0.01	μg/l			
*	<0.01	μg/l			
*	<0.01	μg/l			
	Résultat	Unité			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.005	μg/l			
	Résultat	Unité			
*	<0.20	μg/l			
	* * * * * * * * * * * * * * * * * * * *	* <0.005 * <0.0018 * <0.001 * 0.001 * 0.005 * 0.005 * <0.005 * <0.01 * <0.01 Résultat * <0.0003 * <0.0003 * <0.0003 * <0.0003 * <0.0003	* <0.005	* <0.005	Résultat Unité * <0.005

Accréditation essais 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

www.eurofins.fr/env

^o ech **211039896-001** Version AR-21-IC-105802-01(30/09/2021) Votre réf. PZ9

COMPOSES ORGA. VOLATILS					_
		Résultat	Unité		
IXBVJ: Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.20	μg/l		
XBVC:m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.03	μg/l		
XBVY: o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.03	μg/l		
IXBVP: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.10	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E. coli.

Claire Herubel

Coordinatrice Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Pour la détermination de la DBO5 (NF EN ISO 5815-1) un minimum de deux dilutions et une mesure par dilution sont effectués sur chaque échantillon. Pour les eaux faibleme chargées, une seule dilution peut être suffisante.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

SDOMODE
Monsieur Sébastien FABRE
CETRAVAL - Route de Pont-Authou – RD 38
27800 MALLEVILLE SUR LE BEC
FRANCE

RAPPORT D'ANALYSE

Dossier N° : 211039896 Date de réception : 16/09/2021

Référence bon de commande : Marché TECH 337 - BdC N°12

N° Ech	Matrice	Référence échantillon	Observations
002	Eau souterraine, de nappe phréatique	PZ8	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) (2324) (voir note ci-dessous) (2326) (voir note ci-dessous)

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX: échantillons congelés.

(2324) [Demande biochimique en oxygène (DBO5)] Les délais de mise en analyse pour ce(s) paramètre(s) sont supérieurs aux délais normatifs mais le résultat reste exploitable selon nos études de stabilité.

(2326) PO4 : filtré et acidifé à J0 ou J+1

EUROFINS HYDROLOGIE NORD SAS

Température de l'air de	6.6°C	ate de réceptior	1	16/09/2021 08:3	0	
enceinte Préleveur	IRH D	ébut d'analyse		16/09/2021 14:2	5	
ate de prélèvement	15/09/2021 11:30			10/00/2021 14.2	O	
PRELEVEMENT	10/00/2021 11:00					
INCLEVENIEN			Résultat	Unité		
SPPZ : Prélèvement d'e	eau souterraine ou piézométrique + Fiche Prestation sous-ti	aitée à				
n laboratoire externe Prélèvement instantané (prise	d'un échantillon unique)					
Pour un ouvrage (piézomètre),	merci de nous préciser les informations ci-dessous :					
 Diamètre de l'ouvrage Profondeur de la nappe 						
- FD T 90-523-3 PARAMETRES PF	DEALARLES					
TAKAMETKESTT	CALABLES		Résultat	Unité		
JB98 : Pouvoir d'oxydor	éduction (rH) Prestation réalisée par nos soins		31.58			
Potentiométrie - Potentiométri	e					
	S Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
Environnement France (S1) Injection ICP -						
	alyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS	*	-			
portée sur www.cofrac.fr) 1-068 Digestion acide - NF EN ISO						
XHAE: Injection HAP Ar	nalyse soustraitée à Eurofins Hydrologie Est (Maxeville)		-			
GC-MS [par extraction L/L] - N	léthode interne					
	sidus LL - GC / MS / MS Analyse soustraitée à Eurofins Hydrolog	io Est				
	Sidds EE - GC / WG / WG Allalyse soustraitee a Eurolins Hydrolog	ic Lat				
Maxeville)		ie Lat				
Maxeville) GC/MS/MS [par extraction L/L]	- Méthode interne	ie Lat				4
Maxeville)	- Méthode interne	ic Lot	Résultat	Unité		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE	- Méthode interne	#	Résultat	Unité ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques i	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins					
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2					
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins					
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins					
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins	#	< 1	ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins	#	< 1	ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia Coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins	#	< 1 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250	#	< 1 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques i Numération - Filtration sur mer JMLLE : Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250	#	< 1 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques i Numération - Filtration sur mer JMLLE : Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb	- Méthode interne Intestinaux (/100 ml) Prestation réalisée par nos soins Inbrane - ISO 7899-2 Immes - Escherichia coli Prestation réalisée par nos soins Inbrane - NF EN ISO 9308-1:2000 Somptive (P/A dans 1L) Prestation réalisée par nos soins Imprane - NF EN ISO 19250	# # #	< 1 Illisible Illisible Non détecté Résultat	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques i Numération - Filtration sur mer JMLLE : Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins CO fr) 1-2202	# # #	< 1 Illisible Illisible Non détecté	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tul X081: Fluorures Analyse	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins CO fr) 1-2202	# # # #	< 1 Illisible Illisible Non détecté Résultat	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tul X081: Fluorures Analyse www.cofrac.fr) 1-0685	- Méthode interne ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins Cr fr) 1-2202 pe fermé - ISO 15705	# # # #	Illisible Illisible Non détecté Résultat 43	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tul X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - Col C4L0: Demande biochii	ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins colfr) 1-2202 pe fermé - ISO 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (porte ductimétrie - NF EN ISO 10304-1 mique en Oxygène (DBO5) Prestation réalisée par nos soins CO	# # # # DFRAC *	Illisible Illisible Non détecté Résultat 43	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tul X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - Coi	ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins con fr) 1-2202 se fermé - ISO 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (porte ductimétrie - NF EN ISO 10304-1 mique en oxygène (DBO5) Prestation réalisée par nos soins CO fr) 1-2202	# # # # DFRAC *	Illisible Illisible Non détecté Résultat 43	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tul X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - Col C4L0: Demande biochii ESSAIS (portée sur www.cofrac Electrochimie - NF EN ISO 58	ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins con fr) 1-2202 pe fermé - ISO 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (porte nductimétrie - NF EN ISO 10304-1 mique en oxygène (DBO5) Prestation réalisée par nos soins CO fr) 1-2202 15-1 que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestati	# # # # # DFRAC * * Se sur *	Illisible Illisible Non détecté Résultat 43	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifor Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tul X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - Col C4L0: Demande biochiu ESSAIS (portée sur www.cofrac Electrochimie - NF EN ISO 58	ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia Coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins Coffr) 1-2202 pe fermé - ISO 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (porte ductimétrie - NF EN ISO 10304-1 mique en oxygène (DBO5) Prestation réalisée par nos soins COffr) 1-2202 15-1 que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation	# # # # # DFRAC * * Se sur *	Illisible Illisible Non détecté Résultat 43 0.12	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		
Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifor Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac. Méthode à petite échelle en tul X081: Fluorures Analyse www.cofrac.fr) 1-0885 Chromatographie ionique - Coi C4L0: Demande biochi ESSAIS (portée sur www.cofrac. Electrochimie - NF EN ISO 58 CBHX: Carbone Organ portée sur www.cofrac.fr) 1-220 Technique [Oxydation Chimiqu	ntestinaux (/100 ml) Prestation réalisée par nos soins nbrane - ISO 7899-2 rmes - Escherichia Coli Prestation réalisée par nos soins nbrane - NF EN ISO 9308-1:2000 somptive (P/A dans 1L) Prestation réalisée par nos soins rane - NF EN ISO 19250 que en Oxygène (ST-DCO) Prestation réalisée par nos soins Coffr) 1-2202 pe fermé - ISO 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (porte ductimétrie - NF EN ISO 10304-1 mique en oxygène (DBO5) Prestation réalisée par nos soins COffr) 1-2202 15-1 que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation réalisée par nos soins COFRAC ESSAIS (que Total (COT) Prestation	# # # # # DFRAC * * Se sur *	Illisible Illisible Non détecté Résultat 43 0.12	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		

LSFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1)

EUROFINS HYDROLOGIE NORD SAS

ech 211039896-002 Version AR-21-IC-105803-01(30/09/2021) Votre réf. PZ8			 Page 3/6
PHYSICO-CHIMIE			
	Résultat	Unité	
CN1M: Orthophosphates (PO4) Prestation réalisée par nos soins COFRAC ESSAIS (portée sur	<0.15	mg PO4/I	
www.cofrac.fr) 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne			
J001 : Mesure du pH Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Potentiométrie - NF EN ISO 10523			
pHàT°C *	7.1	Unités pH	
Température de mesure du pH	18.5	°C	
JK98 : Conductivité à 25°C Prestation réalisée par nos soins COFRAC ESSAIS (portée sur vww.cofrac.fr) 1-2202 Conductimétrie - NF EN 27888	754	μS/cm	
ANIONS	Résultat	Unité	
C4YI: Nitrites Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	0.20	mg NO2/I	
,	0.20	1119 1102/1	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
C4YJ: Nitrates Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	26.9	mg NO3/I	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
CN65 : Sulfates (SO4) Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr)	8.2	mg/l	
I-2202 Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
C4YH: Chlorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	17.8	mg/l	
Spectrophotométrie (UV/VIS) - NF ISO 15923-1			
CATIONS			
	Résultat	Unité	
LSFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	140	mg/l	
SFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * * * * * * * * * * * * * * * * * *	1.2	mg/l	
LSFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) * COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	16	mg/l	

IC99I : Ammonium Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	*	0.92	mg NH4/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
METAUX					
		Résultat	Unité		
LSFE5 : Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.01	μg/l		
LSFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	12	μg/l		
LSFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	3.3	μg/l		
LSFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.05	μg/l		

Accréditation essais 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488

ICP/MS - NF EN ISO 17294-2

9.6

mg/l

N° ech	211039896-002	Version AR-21-IC-105803-01(30/09/2021)	Votre réf. PZ8	Page 4/6
--------	---------------	--	----------------	-----------------

version / 11 2 1 10 100 000 0 1 (00 / 00 / 202 1) Vottle lei. 1 20				1 agc	
METAUX		Résultat	Unité		
LSFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.44	μg/l		
LSFE2: Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	1.8	μg/l		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.2	µg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	170	μg/l		
LS112: Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	49.2	μg/l		
LS184: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.50	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN: Cyanures totaux Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	<0.1	mg/l		
IXA46 : Organo halogénés adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	68	µg/l		
HYDROCARB. POLYCYCLIQUES		Résultat	Unité		
IXHA6 : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 Calcul - Méthode interne	*	0.002	μg/l		
IX6RE: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
IX6RB: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	0.002	μg/l		
IX6RJ: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.05	μg/l		
IX6RN: Indeno (1,2,3-cd) Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.0006	μg/l		
IX6RD: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		
IX6RA: Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.01	μg/l		

N° ech	211039896-002	Version AR-21-IC-105803-01(30/09/2021)	Votre réf. PZ8	Page 5/6
--------	---------------	--	----------------	----------

P ech 211039696-002 Version AR-21-1C-103603-01(30/09/2021) Votre réf. PZ6			Page C	<u> </u>
HYDROCARB. POLYCYCLIQUES	Résultat	Unité		
IX6R8 : Dibenz(a,c/a,h)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l		
IX6RF: Chrysène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur * www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.0018	μg/l		
IX6R7 : Benzo(a)anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC * ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.001	μg/l		
X6RR: Benzo(a)pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.001	μg/l		
IX6RG: Benzo(b)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC * ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l		
IX6RI: Benzo(ghi)Pérylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS * (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.0006	μg/l		
IX6RH: Benzo(k)fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.005	μg/l		
IX6RC: Anthracène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l		
IX6RK: Acénaphtène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l		
IX6RP: Acénaphthylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	<0.01	μg/l		
POLYCHLORO-BIPHENYLES	Résultat	Unité		
IX6JB: PCB 101 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.0003	μg/l		
IX6JA: PCB 52 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.0003	μg/l		
IX6J9 : PCB 28 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.0003	μg/l		
IX6JE: PCB 180 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.0003	μg/l		
IX6JD: PCB 153 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.0003	μg/l		
IX6JC: PCB 138 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.0003	μg/l		
IX6IK: PCB 118 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS/MS [par extraction L/L] - Méthode interne	<0.005	μg/l		
COMPOSES ORGA. VOLATILS	Résultat	Unité		
IXBV5 : Benzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	<0.20	μg/l		

^o ech **211039896-002** | Version AR-21-IC-105803-01(30/09/2021) | Votre réf. PZ8

COMPOSES ORGA. VOLATILS					
		Résultat	Unité		
IXBVJ: Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.20	μg/l		
IXBVC: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.03	μg/l		
IXBVY: o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.03	μg/l		
IXBVP: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.10	μg/l		

<u>Conclusion / Déclaration de conformité</u> (Couverte par l'accréditation)

Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E. coli.

Claire Herubel

Coordinatrice Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Pour la détermination de la DBO5 (NF EN ISO 5815-1) un minimum de deux dilutions et une mesure par dilution sont effectués sur chaque échantillon. Pour les eaux faibleme chargées, une seule dilution peut être suffisante.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

SDOMODE Monsieur Sébastien FABRE CETRAVAL - Route de Pont-Authou - RD 38 27800 MALLEVILLE SUR LE BEC FRANCE

RAPPORT D'ANALYSE

Version du : 30/09/2021 N° de rapport d'analyse : AR-21-IC-105804-01 Page 1/6

Date de réception : 16/09/2021 Dossier N°: 211039896

Référence bon de commande : Marché TECH 337 - BdC N°12

N° Ech	Matrice	Référence échantillon	Observations
003	Eau souterraine, de nappe phréatique	PZ10	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) (2324) (voir note ci-dessous) (2326) (voir note ci-dessous)

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

AOX : échantillons congelés.

(2324) [Demande biochimique en oxygène (DBO5)] Les délais de mise en analyse pour ce(s) paramètre(s) sont supérieurs aux délais normatifs mais le résultat reste exploitable selon nos études de stabilité.

(2326) PO4 : filtré et acidifé à J0 ou J+1

EUROFINS HYDROLOGIE NORD SAS

Température de l'air de	6.6°C D	ate de réceptior	1	16/09/2021 08:3	0	
enceinte Préleveur	IRH D	but d'analyse		16/09/2021 14:2	5	
ate de prélèvement	15/09/2021 10:40			10/00/2021 14.2	O	
PRELEVEMENT	10/00/2021 10:10					
INCLEVEIVICINI			Résultat	Unité		
	eau souterraine ou piézométrique + Fiche Prestation sous-t	aitée à				
n laboratoire externe Prélèvement instantané (prise	d'un échantillon unique).					
	merci de nous préciser les informations ci-dessous :					
 Profondeur de la nappe 						
- FD T 90-523-3 PARAMETRES PF	REALARLES					-
TATOWNETREOTT	(E/(E/(BEEO		Résultat	Unité		
JB98 : Pouvoir d'oxydor	éduction (rH) Prestation réalisée par nos soins		31.32			
Potentiométrie - Potentiométri	re					
	S Métaux Totaux Analyse soustraitée à Eurofins Analyses pour		-			
Environnement France (S1) Injection ICP -	Towar Amaryos sossitative a Euronia Anaryota poul					
	nalyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS	*	-			
portée sur www.cofrac.fr) 1-068 Digestion acide - NF EN ISO						
XHAE : Injection HAP A	nalyse soustraitée à Eurofins Hydrologie Est (Maxeville)		-			
GC-MS [par extraction L/L] - M	Méthode interne					
						_
	esidus LL - GC / MS / MS Analyse soustraitée à Eurofins Hydrolog	ie Est	-			
XMG3 : Injection multiré	, , ,	ie Est	-			
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L]] - Méthode interne	ie Est	-			
XMG3 : Injection multiré] - Méthode interne	ie Est	- Résultat	Unité		d
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE] - Méthode interne	ie Est #				
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE UM3D0 : Entérocoques] - Méthode interne intestinaux (/100 ml) Prestation réalisée par nos soins		- Résultat > 100	Unité ufc/100 ml		
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques Numération - Filtration sur mer	j - Méthode interne intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2					
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE UM3D0 : Entérocoques Numération - Filtration sur mer UMLLE : Bactéries colifo	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins					
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE UM3D0 : Entérocoques Numération - Filtration sur mer UMLLE : Bactéries colifo Numération - Filtration sur mer	j - Méthode interne intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2		> 100	ufc/100 ml		
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques Numération - Filtration sur mer JMLLE : Bactéries colifo Numération - Filtration sur mer Bactéries coliformes	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins	#	> 100	ufc/100 ml		
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE UM3D0 : Entérocoques i Numération - Filtration sur mer UMLLE : Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000	#	> 100 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
XMG3: Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000	#	> 100	ufc/100 ml		
XMG3: Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250	#	> 100 Illisible Illisible	ufc/100 ml ufc/100 ml ufc/100 ml		
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE UM3D0 : Entérocoques Numération - Filtration sur mer UMLLE : Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli UMPF8 : Salmonella pré	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250	#	> 100 Illisible Illisible Non détecté	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre		
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques i Numération - Filtration sur mer JMLLE : Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 esomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250	# # #	> 100 Illisible Illisible Non détecté Résultat	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité		
XMG3 : Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0 : Entérocoques Numération - Filtration sur mer JMLLE : Bactéries colifoc Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8 : Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX : Demande Chimi	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 escomptive (ST-DCO) Prestation réalisée par nos soins Colore en Oxygène (ST-DCO) Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Pres	# # #	> 100 Illisible Illisible Non détecté	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre		
XMG3: Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tu	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 escomptive (ST-DCO) Prestation réalisée par nos soins Colore en Oxygène (ST-DCO) Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Prestation Pres	# # # #	> 100 Illisible Illisible Non détecté Résultat	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité		
XMG3: Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques Numération - Filtration sur men JMLLE: Bactéries colifor Numération - Filtration sur men Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tu X081: Fluorures Analyse www.cofrac.fr) 1-0685	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 press - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 escomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 escomptive (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins Colore (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation réalisée par nos soins COLORE (ST-DCO) Prestation Prestatio	# # # # # # # # # # # # # # # # # # #	> 100 Illisible Illisible Non détecté Résultat 8	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l		
XMG3: Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur men JMLLE: Bactéries colifor Numération - Filtration sur men Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur ment PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tu X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - Co C4L0: Demande biochi	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 Esomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 Gue en Oxygène (ST-DCO) Prestation réalisée par nos soins control (fr) 1-2202 per fermé - ISO 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (port inductimétrie - NF EN ISO 10304-1 mique en oxygène (DBO5) Prestation réalisée par nos soins CO fr) 1-2202	# # # # PDFRAC *	> 100 Illisible Illisible Non détecté Résultat 8	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l		
XMG3: Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE UM3D0: Entérocoques i Numération - Filtration sur men UMLLE: Bactéries colifo Numération - Filtration sur men Bactéries coliformes Escherichia coli UMPF8: Salmonella pré Détection - Filtration sur ment PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tu X081: Fluorures Analyse www.cofrac.fr) 1-0885 Chromatographie ionique - Co C4L0: Demande biocht ESSAIS (portée sur www.cofrac Electrochimie - NF EN ISO 58 ICBHX: Carbone Organ portée sur www.cofrac.fr) 1-220	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 Esomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 Esque en Oxygène (ST-DCO) Prestation réalisée par nos soins colore en los 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (port inductimétrie - NF EN ISO 10304-1 mique en oxygène (DBO5) Prestation réalisée par nos soins CO (fr) 1-2202 if 1-202 if 1-202 ique Total (COT) Prestation réalisée par nos soins COFRAC ESSAI	# # # # # # # # # # # # # # # # # # #	> 100 Illisible Illisible Non détecté Résultat 8	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		
XMG3: Injection multiré Maxeville) GC/MS/MS [par extraction L/L] MICROBIOLOGIE JM3D0: Entérocoques i Numération - Filtration sur mer JMLLE: Bactéries colifo Numération - Filtration sur mer Bactéries coliformes Escherichia coli JMPF8: Salmonella pré Détection - Filtration sur memb PHYSICO-CHIMIE C3VX: Demande Chimi ESSAIS (portée sur www.cofrac Méthode à petite échelle en tu X081: Fluorures Analyse www.cofrac.fr) 1-0685 Chromatographie ionique - Co C4L0: Demande biochi ESSAIS (portée sur www.cofrac Electrochimie - NF EN ISO 58 CBHX: Carbone Organ portée sur www.cofrac.fr) 1-220 Technique [Oxydation Chimiqu	intestinaux (/100 ml) Prestation réalisée par nos soins mbrane - ISO 7899-2 prmes - Escherichia coli Prestation réalisée par nos soins mbrane - NF EN ISO 9308-1:2000 Esomptive (P/A dans 1L) Prestation réalisée par nos soins prane - NF EN ISO 19250 Esque en Oxygène (ST-DCO) Prestation réalisée par nos soins colore en los 15705 soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (port inductimétrie - NF EN ISO 10304-1 mique en oxygène (DBO5) Prestation réalisée par nos soins CO (fr) 1-2202 if 1-202 if 1-202 ique Total (COT) Prestation réalisée par nos soins COFRAC ESSAI	# # # # # # # # # # # # # # # # # # #	> 100 Illisible Illisible Non détecté Résultat 8 0.09	ufc/100 ml ufc/100 ml ufc/100 ml /1 litre Unité mg O2/l mg/l		

211039896-003 | Version AR-21-IC-105804-01(30/09/2021) | Votre réf. PZ10

LSFDE: Potassium (K) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1)

LSFDG: Magnésium (Mg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1)

EUROFINS HYDROLOGIE NORD SAS

Page 3/6

PHYSICO-CHIMIE					
FITSIOU-CHIMIE		Résultat	Unité		
		rtocanat	Office		
ICN TWI: Offnophosphates (PO4) Prestation realisee par nos soins COFRAC ESSAIS (portee sur	*	0.9	mg PO4/I		
www.cofrac.fr) 1-2202 Spectrophotométrie (UV/VIS) - Méthode interne					
IJ001 : Mesure du pH Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	`				
Potentiométrie - NF EN ISO 10523	•				
Fotentionietie - INF EN ISO 10323					
pH à T°C	*	7.1	Unités pH		
Température de mesure du pH		18.5	°C		
IJK98 : Conductivité à 25°C Prestation réalisée par nos soins COFRAC ESSAIS (portée sur	*	665	μS/cm		
www.cofrac.fr) 1-2202 Conductimétrie - NF EN 27888					
ANIONS					
		Résultat	Unité		
IC4YI: Nitrites Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	*	<0.01	mg NO2/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
	*	20.0	NO2/I		
IC4YJ: Nitrates Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202		32.0	mg NO3/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
ICINOS: Sulfates (SO4) Prestation realisee par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr)	*	7.0	mg/l		
1-2202					
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
IC4YH: Chlorures Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	*	14.5	mg/l		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
CATIONS					
		Résultat	Unité		
LSFDD: Calcium (Ca) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1)	*	130	mg/l		
COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488					
ICP/MS - NF EN ISO 17294-2					

LSFDI: Sodium (Na) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	7.6	mg/l		
IC99I : Ammonium Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202	*	<0.05	mg NH4/I		
Spectrophotométrie (UV/VIS) - NF ISO 15923-1					
METAUX					
		Résultat	Unité		
LSFE5 : Mercure (Hg) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.01	μg/l		
LSFDS: Manganèse (Mn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	240	μg/l		
LSFDU: Nickel (Ni) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	14	μg/l		
LSFDZ: Cadmium (Cd) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.09	μg/l		

Accréditation essais 1-2202 Site de Douai Portée disponible sur www.cofrac.fr

COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2

COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2

1.4

15

mg/l

mg/l

N° ech 21I039896-003 Version AR-21-IC	C-105804-01(30/09/2021) Votre réf. PZ10	Page 4/6
--	---	----------

version / 11 / 2 / 10 / 10 / 10 / 10 / 10 / 10				1 agc	
METAUX		Résultat	Unité		
LSFE1 : Chrome (Cr) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	0.71	μg/l		
LSFE2 : Cuivre (Cu) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	2.2	μg/l		
LSFDT: Etain (Sn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	<0.2	µg/l		
LSFDA: Fer (Fe) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	560	μg/l		
LS112 : Zinc (Zn) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	41.2	μg/l		
LS184: Plomb (Pb) Analyse soustraitée à Eurofins Analyses pour l'Environnement France (S1) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-1488 ICP/MS - NF EN ISO 17294-2	*	2.80	μg/l		
PARAMETRES TOXIQUES		Résultat	Unité		
ICOTN: Cyanures totaux Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Flux continu - NF EN ISO 14403-2	*	<10	μg/l		
PARAMETRES INDESIRABLES		Résultat	Unité		
IJ065 : Indice phénol Prestation réalisée par nos soins COFRAC ESSAIS (portée sur www.cofrac.fr) 1-2202 Flux continu - NF EN ISO 14402	*	<10.00	μg/l		
IX6ZK: Indice Hydrocarbures (C10-C40) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/FID [Extraction L/L] - NF EN ISO 9377-2	*	0.6	mg/l		
IXA46 : Organo halogénés adsorbables (AOX) Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 Coulométrie [Adsorption, Combustion] - NF EN ISO 9562 (H 14): 2005-02	*	290	μg/l		
HYDROCARB. POLYCYCLIQUES		Résultat	Unité		
IXHA6 : Somme des HAP 16 Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 Calcul - Méthode interne	*	<0.05	μg/l		
IX6RE: Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
IX6RB: Phénanthrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.002	μg/l		
IX6RJ: Naphtalène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.05	μg/l		
IX6RN: Indeno (1,2,3-cd) Pyrène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.0006	μg/l		
IX6RD: Fluoranthène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.005	μg/l		
IX6RA: Fluorène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 GC/MS [par extraction L/L] - Méthode interne	*	<0.01	μg/l		

N° ech	211039896-003	Version AR-21-IC-105804-01(30/09/2021)	Votre réf. PZ10	Page 5/6
--------	---------------	--	-----------------	----------

				Page :	// U
	Résultat	Unité			
*	<0.005	μg/l			
*	<0.0018	μg/l			
*	<0.001	μg/l			
*	<0.001	μg/l			
*	<0.005	μg/l			
*	<0.0006	μg/l			
*	<0.005	μg/l			
*	<0.01	μg/l			
*	<0.01	μg/l			
*	<0.01	μg/l			
	Résultat	Unité			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.0003	μg/l			
*	<0.005	μg/l			
	Résultat	Unité			
*	<0.20	μg/l			
	* * * * * * * * *	* <0.005 * <0.0018 * <0.001 * <0.001 * <0.005 * <0.005 * <0.005 * <0.01 * <0.01 Résultat * <0.0003 * <0.0003 * <0.0003 * <0.0003 * <0.0003	* <0.005	* <0.005	* <0.005

N° ech **211039896-003** | Version AR-21-IC-105804-01(30/09/2021) | Votre réf. PZ10 Page 6/6

COMPOSES ORGA. VOLATILS		Résultat	Unité		
IXBVJ: Ethylbenzène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.20	μg/l		
IXBVC: m+p-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.03	μg/l		
XBVY: o-Xylène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.03	μg/l		
IXBVP: Toluène Analyse soustraitée à Eurofins Hydrologie Est (Maxeville) COFRAC ESSAIS (portée sur www.cofrac.fr) 1-0685 HS - GC/MS [HES] - NF ISO 11423-1.	*	<0.10	μg/l		

Conclusion / Déclaration de conformité (Couverte par l'accréditation)

Culture illisible. Flore interférente importante empêchant toute mise en évidence de bactéries coliformes et/ou E. coli.

Claire Herubel

Coordinatrice Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats s'appliquent à l'échantillon tel qu'il a été reçu.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011 – Liste des paramètres agréés disponible sur le site www.labeau.ecologie.gouv.fr.

NGL : les valeurs inférieures à la LQ ne sont pas prises en compte dans le calcul.

Pour la détermination de la DBO5 (NF EN ISO 5815-1) un minimum de deux dilutions et une mesure par dilution sont effectués sur chaque échantillon. Pour les eaux faibleme chargées, une seule dilution peut être suffisante.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Annexe X: Rose des vents

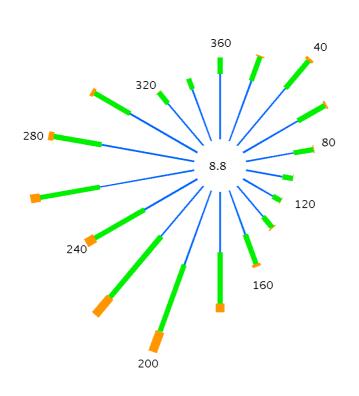
ROSE DES VENTS

Vent horaire à 10 mètres, moyenné sur 10 mn

Du 01 JANVIER 2000 au 31 DÉCEMBRE 2010

EVREUX-HUEST (27)

Indicatif: 27347001, alt: 138 m., lat: 49°01'30"N, lon: 01°13'18"E


Fréquence des vents en fonction de leur provenance en %

Valeurs trihoraires entre 0h00 et 21h00, heure UTC

Tableau de répartition

Nombre de cas étudiés : 31935

Manquants: 209

Dir.	[5.0;16.0 [[16.0; 29.0]	> 29.0 km/h	Total
20	3.2	1.3	+	4.5
40	3.7	1.8	0.1	5.6
60	3.1	1.5	0.1	4.8
80	2.4	1.0	+	3.4
100	1.8	0.5	+	2.3
120	1.7	0.4	+	2.2
140	2.0	0.7	+	2.7
160	2.3	1.5	0.1	4.0
180	3.0	2.5	0.4	5.9
200	3.9	3.5	1.1	8.5
220	3.3	3.9	1.1	8.3
240	3.0	2.8	0.5	6.4
260	4.8	3.0	0.5	8.2
280	4.7	2.4	0.3	7.3
300	3.9	2.0	0.2	6.1
320	2.7	0.7	+	3.5
340	2.7	0.6	+	3.3
360	3.2	0.8	+	4.1
Total	55.4	31.1	4.7	91.2
[0;5.0 [8.8			

Groupes de vitesses (km/h)

[5.0;16.0 [[16.0;29.0] > à 29.0

Pourcentage par direction

| T | T | T | T | T |
| 0% 5%

Dir. : Direction d'où vient le vent en rose de 360° : 90° = Est, 180° = Sud, 270° = Ouest, 360° = Nord le signe + indique une fréquence non nulle mais inférieure à 0.1%

Page 1/1

Edité le : 06/03/2012 dans l'état de la base

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Annexe XI: Diagnostic écologique